Automatic Generation of Multi-objective ACO Algorithms for the Bi-objective Knapsack | SpringerLink
Skip to main content

Automatic Generation of Multi-objective ACO Algorithms for the Bi-objective Knapsack

  • Conference paper
Swarm Intelligence (ANTS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7461))

Included in the following conference series:

Abstract

Multi-objective ant colony optimization (MOACO) algorithms have shown promising results for various multi-objective problems, but they also offer a large number of possible design choices. Often, exploring all possible configurations is practically infeasible. Recently, the automatic configuration of a MOACO framework was explored and was shown to result in new state-of-the-art MOACO algorithms for the bi-objective traveling salesman problem. In this paper, we apply this approach to the bi-objective bidimensional knapsack problem (bBKP) to prove its generality and power. As a first step, we tune and improve the performance of four MOACO algorithms that have been earlier proposed for the bBKP. In a second step, we configure the full MOACO framework and show that the automatically configured MOACO framework outperforms all previous MOACO algorithms for the bBKP as well as their improved variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alaya, I., Solnon, C., Ghédira, K.: Ant colony optimization for multi-objective optimization problems. In: ICTAI 2007, vol. 1, pp. 450–457. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  2. Balaprakash, P., Birattari, M., Stützle, T.: Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HCI/ICCV 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Barán, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing problem with time windows. In: Proceedings of the Twenty-first IASTED Intern. Conf. on Appl. Informat., Insbruck, Austria, pp. 97–102 (2003)

    Google Scholar 

  4. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic Generation of MOACO Algorithms for the Biobjective Bidimensional Knapsack Problem: Supplementary material (2012), http://iridia.ulb.ac.be/supp/IridiaSupp2012-008/

  5. Bullnheimer, B., Hartl, R., Strauss, C.: A new rank-based version of the Ant System: A computational study. Cen. Eur. J. for Oper. Res. and Econ. 7(1), 25–38 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)

    Google Scholar 

  7. Doerner, K.F., Hartl, R.F., Reimann, M.: Are Competants more competent for problem solving? The case of a multiple objective transportation problem. Cen. Eur. J. for Oper. Res. and Econ. 11(2), 115–141 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: CEC 2006, pp. 1157–1163. IEEE Press, Piscataway (2006)

    Google Scholar 

  9. García-Martínez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. Eur. J. of Oper. Res. 180(1), 116–148 (2007)

    Article  MATH  Google Scholar 

  10. Iredi, S., Merkle, D., Middendorf, M.: Bi-Criterion Optimization with Multi Colony Ant Algorithms. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

    Google Scholar 

  12. López-Ibáñez, M., Stützle, T.: The impact of design choices of multi-objective ant colony optimization algorithms on performance: An experimental study on the biobjective TSP. In: Pelikan, M., Branke, J. (eds.) GECCO 2010, pp. 71–78. ACM press, New York (2010)

    Google Scholar 

  13. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony optimization algorithms. IEEE Trans. on Evol. Comput. (in press, 2012)

    Google Scholar 

  14. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. Arxiv preprint arXiv:1007.4063 (2010)

    Google Scholar 

  15. Stützle, T., Hoos, H.H.: \(\mathcal{MAX-MIN}\) Ant System. Future Generat. Comput. Systems 16(8), 889–914 (2000)

    Article  Google Scholar 

  16. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto evolutionary algorithm. IEEE Trans. on Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  17. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. on Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bezerra, L.C.T., López-Ibáñez, M., Stützle, T. (2012). Automatic Generation of Multi-objective ACO Algorithms for the Bi-objective Knapsack. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2012. Lecture Notes in Computer Science, vol 7461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32650-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32650-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32649-3

  • Online ISBN: 978-3-642-32650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics