Abstract
Multi-objective ant colony optimization (MOACO) algorithms have shown promising results for various multi-objective problems, but they also offer a large number of possible design choices. Often, exploring all possible configurations is practically infeasible. Recently, the automatic configuration of a MOACO framework was explored and was shown to result in new state-of-the-art MOACO algorithms for the bi-objective traveling salesman problem. In this paper, we apply this approach to the bi-objective bidimensional knapsack problem (bBKP) to prove its generality and power. As a first step, we tune and improve the performance of four MOACO algorithms that have been earlier proposed for the bBKP. In a second step, we configure the full MOACO framework and show that the automatically configured MOACO framework outperforms all previous MOACO algorithms for the bBKP as well as their improved variants.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alaya, I., Solnon, C., Ghédira, K.: Ant colony optimization for multi-objective optimization problems. In: ICTAI 2007, vol. 1, pp. 450–457. IEEE Computer Society Press, Los Alamitos (2007)
Balaprakash, P., Birattari, M., Stützle, T.: Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HCI/ICCV 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)
Barán, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing problem with time windows. In: Proceedings of the Twenty-first IASTED Intern. Conf. on Appl. Informat., Insbruck, Austria, pp. 97–102 (2003)
Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic Generation of MOACO Algorithms for the Biobjective Bidimensional Knapsack Problem: Supplementary material (2012), http://iridia.ulb.ac.be/supp/IridiaSupp2012-008/
Bullnheimer, B., Hartl, R., Strauss, C.: A new rank-based version of the Ant System: A computational study. Cen. Eur. J. for Oper. Res. and Econ. 7(1), 25–38 (1999)
Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)
Doerner, K.F., Hartl, R.F., Reimann, M.: Are Competants more competent for problem solving? The case of a multiple objective transportation problem. Cen. Eur. J. for Oper. Res. and Econ. 11(2), 115–141 (2003)
Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: CEC 2006, pp. 1157–1163. IEEE Press, Piscataway (2006)
García-Martínez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. Eur. J. of Oper. Res. 180(1), 116–148 (2007)
Iredi, S., Merkle, D., Middendorf, M.: Bi-Criterion Optimization with Multi Colony Ant Algorithms. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001)
López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)
López-Ibáñez, M., Stützle, T.: The impact of design choices of multi-objective ant colony optimization algorithms on performance: An experimental study on the biobjective TSP. In: Pelikan, M., Branke, J. (eds.) GECCO 2010, pp. 71–78. ACM press, New York (2010)
López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony optimization algorithms. IEEE Trans. on Evol. Comput. (in press, 2012)
Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. Arxiv preprint arXiv:1007.4063 (2010)
Stützle, T., Hoos, H.H.: \(\mathcal{MAX-MIN}\) Ant System. Future Generat. Comput. Systems 16(8), 889–914 (2000)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto evolutionary algorithm. IEEE Trans. on Evol. Comput. 3(4), 257–271 (1999)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. on Evol. Comput. 7(2), 117–132 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bezerra, L.C.T., López-Ibáñez, M., Stützle, T. (2012). Automatic Generation of Multi-objective ACO Algorithms for the Bi-objective Knapsack. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2012. Lecture Notes in Computer Science, vol 7461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32650-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-32650-9_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32649-3
Online ISBN: 978-3-642-32650-9
eBook Packages: Computer ScienceComputer Science (R0)