Abstract
In this paper we present a new method of learning Finite- State Machines (FSM) with the specified value of a given fitness function, which is based on an Ant Colony Optimization algorithm (ACO) and a graph representation of the search space. The input data is a set of events, a set of actions and the number of states in the target FSM and the goal is to maximize the given fitness function, which is defined on the set of all FSMs with given parameters. Comparison of the new algorithm and a genetic algorithm (GA) on benchmark problems shows that the new algorithm either outperforms GA or works just as well.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Spears, W.M., Gordon, D.E.: Evolving finite-state machine strategies for protecting resources. In: Proceedings of the International Symposium on Methodologies for Intelligeng Systems, pp. 166–175 (2000)
Lucas, S., Reynolds, J.: Learning dfa: Evolution versus evidence driven state merging. In: The 2003 Congress on Evolutionary Computation (CEC 2003), vol. 1, pp. 351–348 (2003)
Polykarpova, N., Shalyto, A.: Automata-based programming. Piter (2009) (in Russian)
Tsarev, F., Egorov, K.: Finite-state machine induction using genetic algorithm based on testing and model checking. In: Proceedings of the 2011 GECCO Conference Companion on Genetic and Evolutionary Computation (GECCO 2011), pp. 759–762 (2011), http://doi.acm.org/10.1145/2001858.2002085 , doi:10.1145/2001858.2002085
Tsarev, F.: Method of finite-state machine induction from tests with genetic programming. Information and Control Systems (Informatsionno-upravljayushiye sistemy, in Russian) (5), 31–36 (2010)
Tsarev, F., Shalyto, A.: Use of genetic programming for finite-state machine generation in the smart ant problem. In: Proceedings of the IV International Scientific-Practical Conference ”Integrated Models and Soft Calculations in Artificial Intelligence”, vol. (2), pp. 590–597 (2007)
Alba, E., Chicano, F.: Acohg: dealing with huge graphs. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computing (GECCO 2007), pp. 10–17 (2007), http://doi.acm.org/10.1145/1276958.1276961 , doi:10.1145/1276958.1276961
Koza, J.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, Cambridge (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chivilikhin, D., Ulyantsev, V. (2012). Learning Finite-State Machines with Ant Colony Optimization. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2012. Lecture Notes in Computer Science, vol 7461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32650-9_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-32650-9_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32649-3
Online ISBN: 978-3-642-32650-9
eBook Packages: Computer ScienceComputer Science (R0)