Learning Finite-State Machines with Ant Colony Optimization | SpringerLink
Skip to main content

Learning Finite-State Machines with Ant Colony Optimization

  • Conference paper
Swarm Intelligence (ANTS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7461))

Included in the following conference series:

Abstract

In this paper we present a new method of learning Finite- State Machines (FSM) with the specified value of a given fitness function, which is based on an Ant Colony Optimization algorithm (ACO) and a graph representation of the search space. The input data is a set of events, a set of actions and the number of states in the target FSM and the goal is to maximize the given fitness function, which is defined on the set of all FSMs with given parameters. Comparison of the new algorithm and a genetic algorithm (GA) on benchmark problems shows that the new algorithm either outperforms GA or works just as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Spears, W.M., Gordon, D.E.: Evolving finite-state machine strategies for protecting resources. In: Proceedings of the International Symposium on Methodologies for Intelligeng Systems, pp. 166–175 (2000)

    Google Scholar 

  2. Lucas, S., Reynolds, J.: Learning dfa: Evolution versus evidence driven state merging. In: The 2003 Congress on Evolutionary Computation (CEC 2003), vol. 1, pp. 351–348 (2003)

    Google Scholar 

  3. Polykarpova, N., Shalyto, A.: Automata-based programming. Piter (2009) (in Russian)

    Google Scholar 

  4. Tsarev, F., Egorov, K.: Finite-state machine induction using genetic algorithm based on testing and model checking. In: Proceedings of the 2011 GECCO Conference Companion on Genetic and Evolutionary Computation (GECCO 2011), pp. 759–762 (2011), http://doi.acm.org/10.1145/2001858.2002085 , doi:10.1145/2001858.2002085

  5. Tsarev, F.: Method of finite-state machine induction from tests with genetic programming. Information and Control Systems (Informatsionno-upravljayushiye sistemy, in Russian) (5), 31–36 (2010)

    Google Scholar 

  6. Tsarev, F., Shalyto, A.: Use of genetic programming for finite-state machine generation in the smart ant problem. In: Proceedings of the IV International Scientific-Practical Conference ”Integrated Models and Soft Calculations in Artificial Intelligence”, vol. (2), pp. 590–597 (2007)

    Google Scholar 

  7. Alba, E., Chicano, F.: Acohg: dealing with huge graphs. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computing (GECCO 2007), pp. 10–17 (2007), http://doi.acm.org/10.1145/1276958.1276961 , doi:10.1145/1276958.1276961

  8. Koza, J.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chivilikhin, D., Ulyantsev, V. (2012). Learning Finite-State Machines with Ant Colony Optimization. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2012. Lecture Notes in Computer Science, vol 7461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32650-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32650-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32649-3

  • Online ISBN: 978-3-642-32650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics