ABC-Miner: An Ant-Based Bayesian Classification Algorithm | SpringerLink
Skip to main content

ABC-Miner: An Ant-Based Bayesian Classification Algorithm

  • Conference paper
Swarm Intelligence (ANTS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7461))

Included in the following conference series:

Abstract

Bayesian networks (BNs) are powerful tools for knowledge representation and inference that encode (in)dependencies among random variables. A Bayesian network classifier is a special kind of these networks that aims to compute the posterior probability of each class given an instance of the attributes and predicts the class with the highest posterior probability. Since learning the optimal BN structure from a dataset is \({\cal NP}\)-hard, heuristic search algorithms need to be applied effectively to build high-quality networks. In this paper, we propose a novel algorithm, called ABC-Miner, for learning the structure of BN classifiers using the Ant Colony Optimization (ACO) meta-heuristic. We describe all the elements necessary to tackle our learning problem using ACO, and experimentally compare the performance of our ant-based Bayesian classification algorithm with other algorithms for learning BN classifiers used in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buntine, W.: Theory refinement on Bayesian networks. In: 17th Conference on Uncertainty in Artificial Intelligence, pp. 52–60. Morgan Kaufmann (1991)

    Google Scholar 

  2. De Campos, L.M., Gámez, J.A., Puerta, J.M.: Learning Bayesian network by ant colony optimisation. Mathware and Soft Computing, 251–268 (2002)

    Google Scholar 

  3. Cheng, J., Greiner, R.: Comparing Bayesian network classifiers. In: 15th Annual Conference on Uncertainty in Artificial Intelligence, pp. 101–108 (1999)

    Google Scholar 

  4. Cheng, J., Greiner, R.: Learning Bayesian Belief Network Classifiers: Algorithms and System. In: 14th Biennial Conference: Advances in Artificial Intelligence, pp. 141–151 (2001)

    Google Scholar 

  5. Chickering, D., Geiger, M., Heckerman, D.: Learning Bayesian networks is NP-complete. Advanced Technologies Division, Microsoft Corporation, Redmond, WA, Technical Report (1994)

    Google Scholar 

  6. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Machine Learning Journal, 309–348 (1992)

    Google Scholar 

  7. Daly, R., Shen, Q., Aitken, S.: Using ant colony optimization in learning Bayesian network equivalence classes. In: Proceedings of UKCI, pp. 111–118 (2006)

    Google Scholar 

  8. Daly, R., Shen, Q.: Learning Bayesian network equivalence classes with ant colony optimization. Journal of Artificial Intelligence Research, 391–447 (2009)

    Google Scholar 

  9. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)

    Google Scholar 

  10. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine Learning Journal, 131–161 (1997)

    Google Scholar 

  11. Friedman, N., Goldszmidt, M.: Learning Bayesian networks with local structure. Learning in Graphical Models, pp. 421–460. Kluwer, Norwell (1998)

    Google Scholar 

  12. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning Journal, 197–244 (1995)

    Google Scholar 

  13. Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.: Classification with ant colony optimization. In: IEEE TEC, pp. 651–665 (2007)

    Google Scholar 

  14. Otero, F.E.B., Freitas, A.A., Johnson, C.G.: cAnt-Miner: An Ant Colony Classification Algorithm to Cope with Continuous Attributes. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 48–59. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Parpinelli, R.S., Lopes, H.S., Freitas, A.: Data mining with an ant colony optimization algorithm. In: IEEE TEC, pp. 321–332 (2002)

    Google Scholar 

  16. Pinto, P.C., Nägele, A., Dejori, M., Runkler, T.A., Costa, J.M.: Learning of Bayesian networks by a local discovery ant colony algorithm. In: IEEE World Congress on Computational Intelligence, pp. 2741–2748 (2008)

    Google Scholar 

  17. Pinto, P.C., Nägele, A., Dejori, M., Runkler, T.A., Costa, J.M.: Using a Local Discovery Ant Algorithm for Bayesian Network Structure Learning. In: IEEE TEC, pp. 767–779 (2009)

    Google Scholar 

  18. Salama, K.M., Abdelbar, A.M., Freitas, A.A.: Multiple pheromone types and other extensions to the Ant-Miner classification rule discovery algorithm. Swarm Intelligence Journal, 149–182 (2011)

    Google Scholar 

  19. UCI Repository of Machine Learning Databases, http://archive.ics.uci.edu/ml/index.html (retrieved October 2011)

  20. Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kauffman (2005)

    Google Scholar 

  21. Yanghui, W., McCall, J., Corne, D.: Two novel Ant Colony Optimization approaches for Bayesian network structure learning. In: IEEE World Congress on Evolutionary Computation, pp. 1–7 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salama, K.M., Freitas, A.A. (2012). ABC-Miner: An Ant-Based Bayesian Classification Algorithm. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2012. Lecture Notes in Computer Science, vol 7461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32650-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32650-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32649-3

  • Online ISBN: 978-3-642-32650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics