Abstract
Particle swarm optimization (PSO) has been applied successfully to a wide range of optimization problems. Appropriate values for control parameters of the particle swarm optimization (PSO) algorithm are critical to its success. This paper proposes that the control parameters of PSO be embedded in the position vector of particles and dynamically adapted while the search is in progress, relieving the user from specifying appropriate values before the search commences. Application of the Self-Adaptive Comprehensive Learning Particle Swarm Optimizer (SACLPSO) to 9 well known test functions show an improvement in performance on most of the functions compared to CLPSO and a tuned PSO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chatterjee, A., Siarry, P.: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res. 33(3), 859–871 (2004)
Clerc, M.: TRIBES, A parameter free particle swarm optimizer, Math stuff for PSO (2002), http://www.mauriceclerc.net
Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: 6th International Symposium on Micromachine and Human Science, pp. 39–43. IEEE Service Center, Piscataway (1995)
Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. Transactions on Evolutionary Computation 10(3) (June 2006)
Meissner, M., Schmuker, M., Schneider, G.: Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training. BMC Bioinformatics 2006 7, 125 (2006)
Olorunda, O., Engelbrecht, A.P.: Measuring Exploration/Exploitation in Particle Swarms using Swarm Diversity. In: IEEE World Congress on Computational Intelligence (CEC 2008), pp. 1128–1134 (2008)
Ratnaweera, A., Halgamuge, S.M., Watson, H.: Self-Organizing hierarchical particle swarm optimiser with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation 8(3), 240–255 (2004)
Riget, J., Vesterstrøm, J.S.: A Diversity-Guided Particle Swarm Optimizer - the ARPSO. Technical report, EVALife, Denmark (2002)
Salomon, R.: Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39, 263–278 (1996)
Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: 7th Annual Conference on Evolutionary Programming, New York, pp. 591–600 (1998)
Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: IEEE Congress on Evolutionary Computation (CEC 2001), vol. 1, pp. 101–106. IEEE Press (2001)
Schutte, F., Groenwold, A.A.: A study of Global Optimization using Particle Swarms. Journal of Global Optimization 31, 93–108 (2005)
Trelea, I.C.: The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection. Information Processing Letters 85(6), 317–325 (2003)
Van den Bergh, F., Engelbrecht, A.P.: A Study of Particle Swarm Optimization Particle Trajectories. Information Sciences 176(8), 937–971 (2006)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 4, 67–82 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ismail, A., Engelbrecht, A.P. (2012). The Self-adaptive Comprehensive Learning Particle Swarm Optimizer. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2012. Lecture Notes in Computer Science, vol 7461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32650-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-32650-9_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32649-3
Online ISBN: 978-3-642-32650-9
eBook Packages: Computer ScienceComputer Science (R0)