The Self-adaptive Comprehensive Learning Particle Swarm Optimizer | SpringerLink
Skip to main content

The Self-adaptive Comprehensive Learning Particle Swarm Optimizer

  • Conference paper
Swarm Intelligence (ANTS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7461))

Included in the following conference series:

Abstract

Particle swarm optimization (PSO) has been applied successfully to a wide range of optimization problems. Appropriate values for control parameters of the particle swarm optimization (PSO) algorithm are critical to its success. This paper proposes that the control parameters of PSO be embedded in the position vector of particles and dynamically adapted while the search is in progress, relieving the user from specifying appropriate values before the search commences. Application of the Self-Adaptive Comprehensive Learning Particle Swarm Optimizer (SACLPSO) to 9 well known test functions show an improvement in performance on most of the functions compared to CLPSO and a tuned PSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chatterjee, A., Siarry, P.: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res. 33(3), 859–871 (2004)

    Article  Google Scholar 

  2. Clerc, M.: TRIBES, A parameter free particle swarm optimizer, Math stuff for PSO (2002), http://www.mauriceclerc.net

  3. Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: 6th International Symposium on Micromachine and Human Science, pp. 39–43. IEEE Service Center, Piscataway (1995)

    Chapter  Google Scholar 

  4. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. Transactions on Evolutionary Computation 10(3) (June 2006)

    Google Scholar 

  5. Meissner, M., Schmuker, M., Schneider, G.: Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training. BMC Bioinformatics 2006 7, 125 (2006)

    Article  Google Scholar 

  6. Olorunda, O., Engelbrecht, A.P.: Measuring Exploration/Exploitation in Particle Swarms using Swarm Diversity. In: IEEE World Congress on Computational Intelligence (CEC 2008), pp. 1128–1134 (2008)

    Google Scholar 

  7. Ratnaweera, A., Halgamuge, S.M., Watson, H.: Self-Organizing hierarchical particle swarm optimiser with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation 8(3), 240–255 (2004)

    Article  Google Scholar 

  8. Riget, J., Vesterstrøm, J.S.: A Diversity-Guided Particle Swarm Optimizer - the ARPSO. Technical report, EVALife, Denmark (2002)

    Google Scholar 

  9. Salomon, R.: Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39, 263–278 (1996)

    Article  Google Scholar 

  10. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: 7th Annual Conference on Evolutionary Programming, New York, pp. 591–600 (1998)

    Google Scholar 

  11. Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: IEEE Congress on Evolutionary Computation (CEC 2001), vol. 1, pp. 101–106. IEEE Press (2001)

    Google Scholar 

  12. Schutte, F., Groenwold, A.A.: A study of Global Optimization using Particle Swarms. Journal of Global Optimization 31, 93–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Trelea, I.C.: The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection. Information Processing Letters 85(6), 317–325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Van den Bergh, F., Engelbrecht, A.P.: A Study of Particle Swarm Optimization Particle Trajectories. Information Sciences 176(8), 937–971 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 4, 67–82 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ismail, A., Engelbrecht, A.P. (2012). The Self-adaptive Comprehensive Learning Particle Swarm Optimizer. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2012. Lecture Notes in Computer Science, vol 7461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32650-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32650-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32649-3

  • Online ISBN: 978-3-642-32650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics