Separation of Rhythms of EEG Signals Based on Hilbert-Huang Transformation with Application to Seizure Detection | SpringerLink
Skip to main content

Separation of Rhythms of EEG Signals Based on Hilbert-Huang Transformation with Application to Seizure Detection

  • Conference paper
Convergence and Hybrid Information Technology (ICHIT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7425))

Included in the following conference series:

Abstract

We present a new method for separation of the rhythms of the electroencephalogram (EEG) signal. The proposed method is based on the Hilbert-Huang transform (HHT). The HHT consists two steps namely empirical mode decomposition (EMD) and the Hilbert transform (HT). The EMD decomposes EEG signal into set of narrow-band intrinsic mode functions (IMFs), and the Hilbert transformation of these IMFs provide instantaneous frequency estimation of the IMFs. The instantaneous frequency estimation of IMFs have been used as a feature to identify the IMFs in order to separate rhythms of EEG signal. The central tendency measure (CTM) has been used to quantify the variability in second order difference (SOD) plots of rhythms of the EEG signal. The CTM parameter is very effective to discriminate epileptic seizure EEG signals from the seizure-free EEG signals. The experimental results show the effectiveness of the proposed method for epileptic seizure detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blinowska, K.J., Czerwosz, L.T., Drabik, W., Franaszczuk, P.J., Ekiert, H.: EEG Data Reduction by Means of Autoregressive Representation and Discriminant Analysis Procedures. Electroencephalogr. Clin. Neurophysiol. 51, 650–658 (1981)

    Article  Google Scholar 

  2. Okyere, J.G., Ktonas, P.Y., Meyer, J.S.: Quantification of Alpha EEG Modulation and Its Relation to Cerebral Blood Flow. IEEE Trans. Biomed. Eng. 33, 690–696 (1986)

    Article  Google Scholar 

  3. Pardey, J., Roberts, S., Tarassenko, L.: A Review of Parametric Modeling Techniques for EEG Analysis. Med. Eng. Phys. 18, 2–11 (1996)

    Article  Google Scholar 

  4. Kroemer, K.H.E., Kroemer, H.J., Kroemer-Elbert, K.E.: Engineering Physiology: Bases of Human Factors/Ergonomics. Van Nostrand Reinhold, New York (1990)

    Google Scholar 

  5. Thakor, N.V., Guo, X.R., Sun, Y.C., Hanley, D.F.: Multiresolution Wavelet Analysis of Evoked Potentials. IEEE Trans. Biomed. Eng. 40, 1085–1093 (1993)

    Article  Google Scholar 

  6. Schiff, S.J., Aldroubi, A., Unser, M., Sato, S.: Fast Wavelet Transformation of EEG. Electroencephalogr. Clin. Neurophysiol. 91, 442–455 (1994)

    Article  Google Scholar 

  7. Sircar, P., Pachori, R.B., Kumar, R.: Analysis of Rhythms of EEG Signals using Orthogonal Polynomial Approximation. In: International Conference on Convergence and Hybrid Information Technology, pp. 176–180 (2009)

    Google Scholar 

  8. Zhong, J., Shuren, Q., Chenglin, P.: Study on Separation for the Frequency Bands of EEG Signal and Frequency Band Relative Intensity Analysis Based upon EMD. In: 7th WSEAS International Conference on Signal Processing, Robotics and Automation, University of Cambridge, UK, February 20-22, pp. 151–155 (2008)

    Google Scholar 

  9. Iasemidis, L.D., Shiau, D.S., Chaovalitwongse, W., Sackellares, J.C., Pardalos, P.N., Principe, J.C., Carney, P.R., Prasad, A., Veeramani, B., Tsakalis, K.: Adaptive Epileptic Seizure Prediction System. IEEE Trans. Biomed. Eng. 50, 616–627 (2003)

    Article  Google Scholar 

  10. Boashash, B., Mesbah, M., Colditz, P.: Time Frequency Detection of EEG Abnormalities. In: Boashash, B. (ed.) Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, ch. 15, article 15.5, pp. 663–670. Elsevier (2003)

    Google Scholar 

  11. Pachori, R.B., Sircar, P.: EEG Signal Analysis using FB Expansion and Second-Order Linear TVAR Process. Signal Process. 88, 415–420 (2008)

    Article  MATH  Google Scholar 

  12. Adeli, H., Zhou, Z., Dadmehr, N.: Analysis of EEG Records in an Epileptic Patient using Wavelet Transform. J. Neurosci. Methods 123, 69–87 (2003)

    Article  Google Scholar 

  13. Tzallas, A.T., Tsipouras, M.G., Fotisdis, D.I.: Automatic Seizure Detection based on Time-Frequency Analysis and Artificial Neural Networks. Comput. Intell. Neurosci., Article ID 80510 (2007)

    Google Scholar 

  14. Güler, N.F., Übeyli, E.D., Güler, Í.: Recurrent Neural Networks Employing Lyapunov Exponents for EEG Signal Classification. Expert Syst. Appl. 29, 506–514 (2005)

    Article  Google Scholar 

  15. Accardo, A., Affinito, M., Carrozzi, M., Bouquet, F.: Use of the Fractal Dimension for the Analysis of Electroencephalographic Time Series. Biol. Cybern. 77, 339–350 (1997)

    Article  MATH  Google Scholar 

  16. Kannathala, N., Choo, M.L., Acharya, U.R., Sadasivan, P.K.: Entropies for Detection of Epilepsy in EEG. Comput. Methods Progr. Biomed. 80, 187–194 (2005)

    Article  Google Scholar 

  17. Ocak, H.: Automatic Detection of Epileptic Seizures in EEG using Discrete Wavelet Transform and Approximate Entropy. Expert Syst. Appl. 36, 2027–2036 (2009)

    Article  Google Scholar 

  18. Pachori, R.B.: Discrimination between Ictal and Seizure-Free EEG Signals using Empirical Mode Decomposition. Res. Lett. Signal Process., Article ID 293056 (2008)

    Google Scholar 

  19. Pachori, R.B., Bajaj, V.: Analysis of Normal and Epileptic Seizure EEG Signals using Empirical Mode Decomposition. Comput. Methods Progr. Biomed. 104, 373–381 (2011)

    Article  Google Scholar 

  20. Bajaj, V., Pachori, R.B.: Classification of Seizure and Nonseizure EEG Signals using Empirical Mode Decomposition. IEEE Trans. Inf. Technol. Biomed. (in press, 2012)

    Google Scholar 

  21. Bajaj, V., Pachori, R.B.: EEG Signal Classification Using Empirical Mode Decomposition and Support Vector Machine. In: Deep, K., Nagar, A., Pant, M., Bansal, J.C. (eds.) Proceedings of the International Conf. on SocProS 2011. AISC, vol. 131, pp. 623–635. Springer, Heidelberg (2012)

    Google Scholar 

  22. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proc. R. Soc. London A 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Flandrin, P., Rilling, G., Goncalvés, P.: Empirical Mode Decomposition as a Filter Bank. IEEE Signal Process. Lett. 11, 112–114 (2004)

    Article  Google Scholar 

  24. Pachori, R.B., Hewson, D., Snoussi, H., Duchêne, J.: Postural Time-Series Analysis using Empirical Mode Decomposition and Second-Order Difference Plots. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, April 19-24, pp. 537–540 (2009)

    Google Scholar 

  25. Cohen, M.E., Hudson, D.L., Deedwania, P.Ć.: Applying Continuous Chaotic Modeling to Cardic Signal Analysis. IEEE Eng. Med. Biol. Mag. 15, 97–102 (1996)

    Article  Google Scholar 

  26. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger C.E.: Indications of Nonlinear Deterministic and Finite-Dimensional Structures in Time Series of Brain Electrical Activity Dependence on Recording Region and Brain State. Phys. Rev. E. 64, Article ID 061907 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bajaj, V., Pachori, R.B. (2012). Separation of Rhythms of EEG Signals Based on Hilbert-Huang Transformation with Application to Seizure Detection. In: Lee, G., Howard, D., Kang, J.J., Ślęzak, D. (eds) Convergence and Hybrid Information Technology. ICHIT 2012. Lecture Notes in Computer Science, vol 7425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32645-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32645-5_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32644-8

  • Online ISBN: 978-3-642-32645-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics