Abstract
We investigate a model-theoretic property that generalizes the classical notion of preservation under substructures. We call this property preservation under substructures modulo bounded cores, and present a syntactic characterization via \(\Sigma_2^0\) sentences for properties of arbitrary structures definable by FO sentences. Towards a sharper characterization, we conjecture that the count of existential quantifiers in the \(\Sigma_2^0\) sentence equals the size of the smallest bounded core. We show that this conjecture holds for special fragments of FO and also over special classes of structures. We present a (not FO-definable) class of finite structures for which the conjecture fails, but for which the classical Łoś-Tarski preservation theorem holds. As a fallout of our studies, we obtain combinatorial proofs of the Łoś-Tarski theorem for some of the aforementioned cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alechina, N., Gurevich, Y.: Syntax vs. Semantics on Finite Structures. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 14–33. Springer, Heidelberg (1997)
Atserias, A., Dawar, A., Grohe, M.: Preservation under extensions on well-behaved finite structures. SIAM J. Comput. 38(4), 1364–1381 (2008)
Atserias, A., Dawar, A., Kolaitis, P.G.: On preservation under homomorphisms and unions of conjunctive queries. J. ACM 53(2), 208–237 (2006)
Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)
Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. Elsevier Science Publishers (1990)
Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Model Theory Makes Formulas Large. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 913–924. Springer, Heidelberg (2007)
Gurevich, Y.: Toward logic tailored for computational complexity. In: Computation and Proof Theory, pp. 175–216. Springer (1984)
Libkin, L.: Elements of Finite Model Theory. Springer (2004)
Rosen, E.: Some aspects of model theory and finite structures. Bulletin of Symbolic Logic 8(3), 380–403 (2002)
Rossman, B.: Homomorphism preservation theorems. J. ACM 55(3), 15:1–15:53 (2008)
Rossman, B.: Personal Communication (2012)
Sankaran, A., Adsul, B., Madan, V., Kamath, P., Chakraborty, S.: Preservation under substructures modulo bounded cores. CoRR, abs/1205.1358 (2012)
Sankaran, A., Limaye, N., Sundararaman, A., Chakraborty, S.: Using preservation theorems for inexpressibility results in first order logic. Technical report (2012), http://www.cfdvs.iitb.ac.in/reports/index.php
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sankaran, A., Adsul, B., Madan, V., Kamath, P., Chakraborty, S. (2012). Preservation under Substructures modulo Bounded Cores. In: Ong, L., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2012. Lecture Notes in Computer Science, vol 7456. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32621-9_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-32621-9_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32620-2
Online ISBN: 978-3-642-32621-9
eBook Packages: Computer ScienceComputer Science (R0)