Preservation under Substructures modulo Bounded Cores | SpringerLink
Skip to main content

Preservation under Substructures modulo Bounded Cores

  • Conference paper
Logic, Language, Information and Computation (WoLLIC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7456))

Abstract

We investigate a model-theoretic property that generalizes the classical notion of preservation under substructures. We call this property preservation under substructures modulo bounded cores, and present a syntactic characterization via \(\Sigma_2^0\) sentences for properties of arbitrary structures definable by FO sentences. Towards a sharper characterization, we conjecture that the count of existential quantifiers in the \(\Sigma_2^0\) sentence equals the size of the smallest bounded core. We show that this conjecture holds for special fragments of FO and also over special classes of structures. We present a (not FO-definable) class of finite structures for which the conjecture fails, but for which the classical Łoś-Tarski preservation theorem holds. As a fallout of our studies, we obtain combinatorial proofs of the Łoś-Tarski theorem for some of the aforementioned cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alechina, N., Gurevich, Y.: Syntax vs. Semantics on Finite Structures. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 14–33. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Atserias, A., Dawar, A., Grohe, M.: Preservation under extensions on well-behaved finite structures. SIAM J. Comput. 38(4), 1364–1381 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atserias, A., Dawar, A., Kolaitis, P.G.: On preservation under homomorphisms and unions of conjunctive queries. J. ACM 53(2), 208–237 (2006)

    Article  MathSciNet  Google Scholar 

  4. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. Elsevier Science Publishers (1990)

    Google Scholar 

  6. Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Model Theory Makes Formulas Large. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 913–924. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Gurevich, Y.: Toward logic tailored for computational complexity. In: Computation and Proof Theory, pp. 175–216. Springer (1984)

    Google Scholar 

  8. Libkin, L.: Elements of Finite Model Theory. Springer (2004)

    Google Scholar 

  9. Rosen, E.: Some aspects of model theory and finite structures. Bulletin of Symbolic Logic 8(3), 380–403 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rossman, B.: Homomorphism preservation theorems. J. ACM 55(3), 15:1–15:53 (2008)

    Article  MathSciNet  Google Scholar 

  11. Rossman, B.: Personal Communication (2012)

    Google Scholar 

  12. Sankaran, A., Adsul, B., Madan, V., Kamath, P., Chakraborty, S.: Preservation under substructures modulo bounded cores. CoRR, abs/1205.1358 (2012)

    Google Scholar 

  13. Sankaran, A., Limaye, N., Sundararaman, A., Chakraborty, S.: Using preservation theorems for inexpressibility results in first order logic. Technical report (2012), http://www.cfdvs.iitb.ac.in/reports/index.php

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sankaran, A., Adsul, B., Madan, V., Kamath, P., Chakraborty, S. (2012). Preservation under Substructures modulo Bounded Cores. In: Ong, L., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2012. Lecture Notes in Computer Science, vol 7456. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32621-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32621-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32620-2

  • Online ISBN: 978-3-642-32621-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics