Abstract
Terms used in search queries often have multiple meanings and usages. Consequently, search results corresponding to different meanings or usages may be retrieved, making identifying relevant results inconvenient and time-consuming. In this paper, we study the problem of grouping the search results based on the different meanings and usages of a query. We build on a previous work that identifies and ranks possible categories of any user query based on the meanings and common usages of the terms and phrases within the query. We use these categories to group search results. In this paper, we study different methods, including several new methods, to assign search result record (SRRs) to the categories. Our SRR grouping framework supports a combination of categorization, clustering and query rewriting techniques. Our experimental results show that some of our grouping methods can achieve high accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: Proc. 2nd ACM Intl. Conf. on Web Search and Data Mining (2009)
Carpineto, C., Osinski, S., Romano, G., Weiss, D.: A survey of web clustering engines. ACM Computing Surveys 41(3), Article No. 17 (2009)
He, M., Cutler, M., Wu, K.: Categorizing Queries by Topic Directory. In: WAIM Conference, pp. 278–284 (2008)
Hemayati, R., Meng, W., Yu, C.: Semantic-Based Grouping of Search Engine Results Using WordNet. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 678–686. Springer, Heidelberg (2007)
Hemayati, R.T., Meng, W., Yu, C.: Identifying and Ranking Possible Semantic and Common Usage Categories of Search Engine Queries. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010. LNCS, vol. 6488, pp. 254–261. Springer, Heidelberg (2010)
Hemayati, R., Meng, W., Yu, C.: Categorizing Search Results. Technical report (2012), http://cs.binghamton.edu/~rtaghiz1/
Hotho, A., Staab, S., Stumme, G.: WordNet Improves Text Document Clustering. In: ACM SIGIR Semantic Web Workshop (2003)
Jain, A.K., Murty, M.N.: Data Clustering: A Review. ACM Computing Surveys (1999)
Liu, F., Yu, C., Meng, W.: Personalize Web Search by Mapping User Queries to Categories. In: ACM CIKM Conference (2002)
Liu, S., Yu, C., Meng, W.: Word Sense Disambiguation in Queries. In: ACM CIKM Conference, pp. 525–532 (2005)
de Luca, E., Nürnberger, A., von-Guericke, O: Ontology-Based Semantic Online Classification of Documents: Supporting Users in Searching the Web. University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, AMR (2004)
Pitler, E., Church, K.: Using word-sense disambiguation methods to classify web queries by intent. In: Conference on Empirical Methods in NLP, vol. 3 (2009)
Santos, R.L.T., Macdonald, C., Ounis, I.: Intentaware search result diversification. In: SIGIR (2011)
de Simone, T., Kazakov, D.: Using WordNet Similarity and Antonymy Relations to Aid Document Retrieval. In: Recent Advances in Natural Language Processing, RANLP (2005)
Song, M.-H., Lim, S.Y., Kang, D.-J., Lee, S.-J.: Ontology-Based Automatic Classification of Web Documents. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006, Part II. LNCS (LNAI), vol. 4114, pp. 690–700. Springer, Heidelberg (2006)
Xing, D., Xue, G., Yang, Q., Yu, Y.: Deep Classifier: Automatically Categorizing Search Results into Large-scale Hierarchies. In: Int’l. Conf. on Web Search & Data Mining (2008)
Zamir, O., Etzioni, O.: Grouper: A Dynamic Clustering Interface to Web Search Results. In: World Wide Web Conference (1999)
Zeng, H., He, Q., Chen, Z., Ma, W.: Learning To Cluster Web Search Results. In: ACM SIGIR (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hemayati, R.T., Meng, W., Yu, C. (2012). Categorizing Search Results Using WordNet and Wikipedia. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds) Web-Age Information Management. WAIM 2012. Lecture Notes in Computer Science, vol 7418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32281-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-32281-5_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32280-8
Online ISBN: 978-3-642-32281-5
eBook Packages: Computer ScienceComputer Science (R0)