Refining Research Citations through Context Analysis | SpringerLink
Skip to main content

Refining Research Citations through Context Analysis

  • Conference paper
Intelligent Informatics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 182))

Abstract

With the impact of both the authors of scientific articles and also scientific publications depending upon citation count, citations play a decisive role in the ranking of both researchers and journals. In this paper, we propose a model to refine the citations in a research article verifying the authenticity of the citation. This model will help to eliminate author-centric and outlier citations thereby refining the citation count of research articles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguilar, J.: Adaptive Random Fuzzy Cognitive Maps. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 402–410. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Burgess, C., Livesay, K., Lund, K.: Explorations in context space: words, sentences, discourse. Discourse Processes 25, 211–257 (1998)

    Article  Google Scholar 

  3. Foltz, P.W., Kintsch, W., Landauer, T.K.: The measurement of textual coherence with latent sematic analysis. Discourse Processes 25(2&3), 285–307 (1998)

    Article  Google Scholar 

  4. Gouws, S.: Evaluation and Development of Conceptual Document Similarity Metrics with Content-based Recommender Applications. Master‘s thesis, Stellenbosch University, South Africa (2003)

    Google Scholar 

  5. He, Q., Pei, J., Kifer, D., Mitra, P., Giles, C.L.: Context-aware citation recommendation. In: Rappa, M., Jones, P., Freire, J., Chakrabarti, S. (eds.) WWW, pp. 421–430 (2010)

    Google Scholar 

  6. Islam, A., Inkpen, D.Z.: Semantic text similarity using corpus-based word similarity and string similarity. TKDD 2(2) (2008)

    Google Scholar 

  7. Janez Brank, D.M., Grobelnik, M.: A survey of ontology evaluation techniques (June 2005)

    Google Scholar 

  8. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. CoRR, vol. cmp-lg/9709008 (1997)

    Google Scholar 

  9. Landauer, T.K., Dumais, S.T.: Latent semantic analysis. Scholarpedia 3(11), 43–56 (2008)

    Article  Google Scholar 

  10. Leacock, C., Chodorow, M.: WordNet: An Electronic Lexical Database - Combining local context and WordNet similarity for word sense identification. In: Wordnet: An Electronic Lexical Database, ch. 11, pp. 265–283. MIT Press (1998)

    Google Scholar 

  11. Li, Y., McLean, D., Bandar, Z., O‘Shea, J., Crockett, K.A.: Sentence similarity based on semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18(8), 1138–1150 (2006)

    Article  Google Scholar 

  12. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge based measures of text semantic similarity. In: AAAI, pp. 775–780. AAAI Press (2006)

    Google Scholar 

  13. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: IJCAI, pp. 448–453 (1995)

    Google Scholar 

  14. Rodríguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from different ontologies. IEEE Trans. Knowl. Data Eng. 15(2), 442–456 (2003)

    Article  Google Scholar 

  15. Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis, E.G.M., Milios, E.E.: Semantic similarity methods in wordnet and their application to information retrieval on the web. In: Bonifati, A., Lee, D. (eds.) WIDM, pp. 10–16. ACM (2005)

    Google Scholar 

  16. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 102(46), 16569–16573 (2009)

    Google Scholar 

  17. Garfield, E.: The Thomson Reuters impact factor (1994), http://thomsonreuters.com/products_services/science/free/essays/impact_factor/ (last accessed August 30, 2011)

  18. Bornmanna, L., Daniel, H.-D.: The citation speed index: A useful biblio-metric indicator to add to the h index. Journal of Informetrics 4, 444–446 (2010)

    Article  Google Scholar 

  19. Seglen, P.O.: Why the impact factor of journals should not be used for evaluating research. BMJ 314, 497–502 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mahalakshmi, G.S., Sendhilkumar, S., Dilip Sam, S. (2013). Refining Research Citations through Context Analysis. In: Abraham, A., Thampi, S. (eds) Intelligent Informatics. Advances in Intelligent Systems and Computing, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32063-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32063-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32062-0

  • Online ISBN: 978-3-642-32063-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics