Abstract
Client puzzles are moderately-hard cryptographic problems — neither easy nor impossible to solve — that can be used as a countermeasure against denial of service attacks on network protocols. Puzzles based on modular exponentiation are attractive as they provide important properties such as non-parallelisability, deterministic solving time, and linear granularity. We propose an efficient client puzzle based on modular exponentiation. Our puzzle requires only a few modular multiplications for puzzle generation and verification. For a server under denial of service attack, this is a significant improvement as the best known non-parallelisable puzzle proposed by Karame and Čapkun (ESORICS 2010) requires at least 2k-bit modular exponentiation, where k is a security parameter. We show that our puzzle satisfies the unforgeability and difficulty properties defined by Chen et al. (Asiacrypt 2009). We present experimental results which show that, for 1024-bit moduli, our proposed puzzle can be up to 30 × faster to verify than the Karame-Čapkun puzzle and 99 × faster than the Rivest et al.’s time-lock puzzle.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aura, T., Nikander, P.: Stateless Connections. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 87–97. Springer, Heidelberg (1997)
Aura, T., Nikander, P., Leiwo, J.: DOS-Resistant Authentication with Client Puzzles. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2000. LNCS, vol. 2133, pp. 170–177. Springer, Heidelberg (2001)
Back, A.: Hashcash: A denial-of-service countermeasure (2002), http://www.hashcash.org/papers/hashcash.pdf
Boyko, V.: A pre-computation scheme for speeding up public-key cryptosystems. Master’s thesis, Massachusetts Institute of Technology (1998), http://hdl.handle.net/1721.1/47493
Boyko, V., Peinado, M., Venkatesan, R.: Speeding up Discrete Log and Factoring Based Schemes via Precomputations. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 221–235. Springer, Heidelberg (1998)
Chen, L., Morrissey, P., Smart, N.P., Warinschi, B.: Security Notions and Generic Constructions for Client Puzzles. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 505–523. Springer, Heidelberg (2009)
Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993)
Feng, W., Kaiser, E., Luu, A.: Design and implementation of network puzzles. In: INFOCOM 2005, vol. 4, pp. 2372–2382. IEEE (2005)
Hofheinz, D., Unruh, D.: Comparing two notions of simulatability. In: Kilian [2], pp. 86–103
Juels, A., Brainard, J.: Client puzzles: A cryptographic countermeasure against connection depletion attacks. In: NDSS 1999, pp. 151–165. Internet Society (1999)
Karame, G., Čapkun, S.: Low-Cost Client Puzzles Based on Modular Exponentiation. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 679–697. Springer, Heidelberg (2010)
Kilian, J. (ed.): TCC 2005. LNCS, vol. 3378. Springer, Heidelberg (2005)
Lenstra, A., Verheul, E.: Selecting cryptographic key sizes. J. Cryptology 14(4), 255–293 (2001)
Mao, W.: Timed-Release Cryptography. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 342–358. Springer, Heidelberg (2001)
Miller, G.L.: Riemann’s hypothesis and tests for primality. In: STOC, pp. 234–239. ACM (1975)
Moore, D., Shannon, C., Brown, D.J., Voelker, G.M., Savage, S.: Inferring internet denial-of-service activity. ACM Transactions on Computer Systems (TOCS) 24(2), 115–139 (2006)
Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Technical Report TR-684, MIT Laboratory for Computer Science (March 1996)
Shparlinski, I.: On the uniformity of distribution of the RSA pairs. Mathematics of Computation 70(234), 801–808 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rangasamy, J., Stebila, D., Kuppusamy, L., Boyd, C., Gonzalez Nieto, J. (2012). Efficient Modular Exponentiation-Based Puzzles for Denial-of-Service Protection. In: Kim, H. (eds) Information Security and Cryptology - ICISC 2011. ICISC 2011. Lecture Notes in Computer Science, vol 7259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31912-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-31912-9_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31911-2
Online ISBN: 978-3-642-31912-9
eBook Packages: Computer ScienceComputer Science (R0)