An Improved Approximation Algorithm for the Bandpass-2 Problem | SpringerLink
Skip to main content

An Improved Approximation Algorithm for the Bandpass-2 Problem

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7402))

Abstract

The bandpass-2 problem (Bandpass-2, for short) is a generalization of the maximum traveling salesman problem (Max TSP, for short). Of particular interest is the difference between the two problems, where the edge weights in Bandpass-2 are dynamic rather than given at the front. A trivial approximation algorithm for Bandpass-2 can achieve a ratio of 0.5. Recently, Tong et al. [19] have presented a nontrivial approximation algorithm for Bandpass-2 that achieves a ratio of \(\frac{21}{40}\). In this paper, we present a new approximation algorithm that achieves a ratio of 0.5318.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Babayev, D.A., Bell, G.I., Nuriyev, U.G.: The Bandpass Problem: Combinatorial Optimization and Library of Problems. Journal of Combinatorial Optimization 18, 151–172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barvinok, A., Johnson, D.S., Woeginger, G.J., Woodroofe, R.: The Maximum Traveling Salesman Problem Under Polyhedral Norms. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 195–201. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Bell, G.I., Babayev, D.A.: Bandpass Problem. In: Annual INFORMS Meeting, Denver, CO, USA (2004)

    Google Scholar 

  4. Chen, Z.-Z., Nagoya, T.: Improved Approximation Algorithms for Metric Max TSP. Journal of Combinatorial Optimization 13, 321–336 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Z.-Z., Okamoto, Y., Wang, L.: Improved deterministic approximation algorithms for Max TSP. Information Processing Letters 95, 333–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z.-Z., Wang, L.: An Improved Randomized Approximation Algorithm for Max TSP. Journal of Combinatorial Optimization 9, 401–432 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gabow, H.: Implementation of Algorithms for Maximum Matching on Nonbipartite Graphs. Ph.D. Thesis, Department of Computer Science, Stanford University, Stanford, California (1973)

    Google Scholar 

  8. Gabow, H.: An Efficient Reduction Technique for Degree-Constrained Subgraph and Bidirected Network Flow Problems. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing, STOC 1983, pp. 448–456. ACM (1983)

    Google Scholar 

  9. Hassin, R., Rubinstein, S.: An Approximation Algorithm for the Maximum Traveling Salesman Problem. Information Processing Letters 67, 125–130 (1998)

    Article  MathSciNet  Google Scholar 

  10. Hassin, R., Rubinstein, S.: Better Approximations for Max TSP. Information Processing Letters 75, 181–186 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hassin, R., Rubinstein, S.: A 7/8-Approximation Approximations for Metric Max TSP. Information Processing Letters 81, 247–251 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs. Journal of the ACM 52, 602–626 (2005)

    Article  MathSciNet  Google Scholar 

  13. Kostochka, A.V., Serdyukov, A.I.: Polynomial Algorithms with the Estimates \(\frac{3}{4}\) and \(\frac{5}{6}\) for the Traveling Salesman Problem of Maximum. Upravlyaemye Sistemy 26, 55–59 (1985) (in Russian)

    MathSciNet  Google Scholar 

  14. Kowalik, L., Mucha, M.: Deterministic 7/8-Approximation for the Metric Maximum TSP. Theor. Comput. Sci. 410, 5000–5009 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, G.: On the Bandpass Problem. Journal of Combinatorial Optimization 22, 71–77 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Paluch, K., Mucha, M., Mądry, A.: A 7/9 - Approximation Algorithm for the Maximum Traveling Salesman Problem. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 298–311. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Serdyukov, A.I.: An Algorithm with an Estimate for the Traveling Salesman Problem of Maximum. Upravlyaemye Sistemy 25, 80–86 (1984) (in Russian)

    MathSciNet  MATH  Google Scholar 

  18. Tarjan, R.E.: Efficiency of a Good But Not Linear Set Union Algorithm. Journal of the ACM 225, 215–225 (1975)

    Article  MathSciNet  Google Scholar 

  19. Tong, W., Goebel, R., Ding, W., Lin, G.: An Improved Approximation Algorithm for the Bandpass Problem. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) AAIM 2012 and FAW 2012. LNCS, vol. 7285, pp. 351–358. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, ZZ., Wang, L. (2012). An Improved Approximation Algorithm for the Bandpass-2 Problem. In: Lin, G. (eds) Combinatorial Optimization and Applications. COCOA 2012. Lecture Notes in Computer Science, vol 7402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31770-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31770-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31769-9

  • Online ISBN: 978-3-642-31770-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics