Abstract
Given a Boolean function as input, a fundamental problem is to find a Boolean circuit with the least number of elementary gates (AND, OR, NOT) that computes the function. The problem generalises naturally to the setting of multiple Boolean functions: find the smallest Boolean circuit that computes all the functions simultaneously. We study an NP-complete variant of this problem titled Ensemble Computation and, especially, its relationship to the Boolean satisfiability (SAT) problem from both the theoretical and practical perspectives, under the two monotone circuit classes: OR-circuits and SUM-circuits. Our main result relates the existence of nontrivial algorithms for CNF-SAT with the problem of rewriting in subquadratic time a given OR-circuit to a SUM-circuit. Furthermore, by developing a SAT encoding for the ensemble computation problem and by employing state-of-the-art SAT solvers, we search for concrete instances that would witness a substantial separation between the size of optimal OR-circuits and optimal SUM-circuits. Our encoding allows for exhaustively checking all small witness candidates. Searching over larger witness candidates presents an interesting challenge for current SAT solver technology.
This research is supported in part by Academy of Finland (grants 132812 and 251170 (MJ), 252083 and 256287 (PK), and 125637 (MK)), and by Helsinki Doctoral Programme in Computer Science - Advanced Computing and Intelligent Systems (JK).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV Technical Report 10/1, Johannes Kepler University, Linz, Austria (2010)
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M., Nederlof, J., Parviainen, P.: Fast zeta transforms for lattices with few irreducibles. In: Proc. SODA, pp. 1436–1444. SIAM (2012)
Dantsin, E., Wolpert, A.: On Moderately Exponential Time for SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 313–325. Springer, Heidelberg (2010)
Demenkov, E., Kojevnikov, A., Kulikov, A.S., Yaroslavtsev, G.: New upper bounds on the Boolean circuit complexity of symmetric functions. Inf. Process. Lett. 110(7), 264–267 (2010)
Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Estrada, G.G.: A Note on Designing Logical Circuits Using SAT. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 410–421. Springer, Heidelberg (2003)
Fuhs, C., Schneider-Kamp, P.: Synthesizing Shortest Linear Straight-Line Programs over GF(2) Using SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 71–84. Springer, Heidelberg (2010)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)
Gebser, M., Kaufmann, B., Schaub, T.: The Conflict-Driven Answer Set Solver clasp: Progress Report. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 509–514. Springer, Heidelberg (2009)
Heule, M., Dufour, M., van Zwieten, J.E., van Maaren, H.: March_eq: Implementing Additional Reasoning into an Efficient Look-Ahead SAT Solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 345–359. Springer, Heidelberg (2005)
Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. System Sci. 62(2), 367–375 (2001)
Kamath, A.P., Karmarkar, N.K., Ramakrishnan, K.G., Resende, M.G.C.: An interior point approach to Boolean vector function synthesis. In: Proc. MWSCAS, pp. 185–189. IEEE (1993)
Kojevnikov, A., Kulikov, A.S., Yaroslavtsev, G.: Finding Efficient Circuits Using SAT-Solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 32–44. Springer, Heidelberg (2009)
Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded treewidth are probably optimal. In: Proc. SODA, pp. 777–789. SIAM (2010)
McKay, B.: nauty user’s guide. Tech. Rep. TR-CS-90-02, Australian National University, Department of Computer Science (1990)
Pătraşcu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Proc. SODA, pp. 1065–1075. SIAM (2010)
Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Automation of Reasoning 2: Classical Papers on Computational Logic 1967-1970, pp. 466–483. Springer, Heidelberg (1983)
Valiant, L.G.: Negation is powerless for Boolean slice functions. SIAM J. Comput. 15(2), 531–535 (1986)
West, D.B.: Introduction to graph theory. Prentice Hall Inc., Upper Saddle River (1996)
Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theoret. Comput. Sci. 348(2-3), 357–365 (2005)
Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. In: Proc. STOC, pp. 231–240. ACM (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Järvisalo, M., Kaski, P., Koivisto, M., Korhonen, J.H. (2012). Finding Efficient Circuits for Ensemble Computation. In: Cimatti, A., Sebastiani, R. (eds) Theory and Applications of Satisfiability Testing – SAT 2012. SAT 2012. Lecture Notes in Computer Science, vol 7317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31612-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-31612-8_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31611-1
Online ISBN: 978-3-642-31612-8
eBook Packages: Computer ScienceComputer Science (R0)