Self-assembly with Geometric Tiles | SpringerLink
Skip to main content

Self-assembly with Geometric Tiles

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

  • 2098 Accesses

Abstract

In this work we propose a generalization of Winfree’s abstract Tile Assembly Model (aTAM) in which tile types are assigned rigid shapes, or geometries, along each tile face. We examine the number of distinct tile types needed to assemble shapes within this model, the temperature required for efficient assembly, and the problem of designing compact geometric faces to meet given compatibility specifications. We pose the following question: can complex geometric tile faces arbitrarily reduce the number of distinct tile types to assemble shapes? Within the most basic generalization of the aTAM, we show that the answer is no. For almost all n at least \(\Omega(\sqrt{\log n})\) tile types are required to uniquely assemble an n×n square, regardless of how much complexity is pumped into the face of each tile type. However, we show for all n we can achieve a matching \(O(\sqrt{\log n})\) tile types, beating the known lower bound of Θ(logn / loglogn) that holds for almost all n within the aTAM. Further, our result holds at temperature τ = 1. Our next result considers a geometric tile model that is a generalization of the 2-handed abstract tile assembly model in which tile aggregates must move together through obstacle free paths within the plane. Within this model we present a novel construction that harnesses the collision free path requirement to allow for the unique assembly of any n×n square with a sleek O(loglogn) distinct tile types. This construction is of interest in that it is the first tile self-assembly result to harness collision free planar translation to increase efficiency, whereas previous work has simply used the planarity restriction as a desireable quality that could be achieved at reduced efficiency. This surprisingly low tile type result further emphasizes a fundamental open question: Is it possible to assemble n×n squares with O(1) distinct tile types? Essentially, how far can the trade off between the number of distinct tile types required for an assembly and the complexity of each tile type itself be taken?

A full version of this paper can be found at [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size for self-assembled squares. In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, pp. 740–748. ACM, New York (2001)

    Chapter  Google Scholar 

  2. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Wasserman, H.: Linear self-assemblies: Equilibria, entropy and convergence rates. In: Sixth International Conference on Difference Equations and Applications. Taylor and Francis (2001)

    Google Scholar 

  3. Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T.: Complexities for generalized models of self-assembly. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (2004)

    Google Scholar 

  4. Barish, R.D., Schulman, R., Rothemund, P.W., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proceedings of the National Academy of Sciences 106(15), 6054–6059 (2009)

    Article  Google Scholar 

  5. Chandran, H., Gopalkrishnan, N., Reif, J.: The Tile Complexity of Linear Assemblies. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 235–253. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Chen, H.-L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation during algorithmic self-assembly. Nano Letters 7(9), 2913–2919 (2007)

    Article  Google Scholar 

  7. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T., de Espanés, P.M.: Complexities for generalized models of self-assembly. SIAM Journal on Computing 34, 1493–1515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cook, M., Fu, Y., Schweller, R.T.: Temperature 1 self-assembly: Deterministic assembly in 3d and probabilistic assembly in 2d. In: Randall, D. (ed.) Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 570–589. SIAM (2011)

    Google Scholar 

  9. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller, R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes with O(1) glues. Natural Computing 7(3), 347–370 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Doty, D., Lutz, J.H., Patitz, M.J., Summers, S.M., Woods, D.: Intrinsic universality in self-assembly. In: Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science, pp. 275–286 (2009)

    Google Scholar 

  11. Doty, D., Patitz, M.J., Reishus, D., Schweller, R.T., Summers, S.M.: Strong fault-tolerance for self-assembly with fuzzy temperature. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp. 417–426 (2010)

    Google Scholar 

  12. Endo, M., Sugita, T., Katsuda, Y., Hidaka, K., Sugiyama, H.: Programmed-assembly system using DNA jigsaw pieces. Chemistry: A European Journal, 5362–5368 (2010)

    Google Scholar 

  13. Fu, B., Patitz, M.J., Schweller, R., Sheline, R.: Self-assembly with geometric tiles. Arxiv preprint arXiv:1104.2809 (2012)

    Google Scholar 

  14. LaBean, T.H., Winfree, E., Reif, J.H.: Experimental progress in computation by self-assembly of DNA tilings. DNA Based Computers 5, 123–140 (1999)

    Google Scholar 

  15. Luhrs, C.: Polyomino-Safe DNA Self-assembly via Block Replacement. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA. LNCS, vol. 5347, pp. 112–126. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Mao, C., LaBean, T.H., Relf, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–496 (2000)

    Article  Google Scholar 

  17. Reif, J.H., Sahu, S., Yin, P.: Compact Error-Resilient Computational DNA Tiling Assemblies. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 293–307. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  19. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: STOC 2000: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, Portland, Oregon, United States, pp. 459–468. ACM Press (2000)

    Google Scholar 

  20. Schulman, R., Winfree, E.: Synthesis of crystals with a programmable kinetic barrier to nucleation. Proceedings of the National Academy of Sciences 104(39), 15236–15241 (2007)

    Article  Google Scholar 

  21. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal on Computing 36(6), 1544–1569 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute of Technology (June 1998)

    Google Scholar 

  23. Winfree, E.: Self-healing tile sets. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.) Nanotechnology: Science and Computation. Natural Computing Series, pp. 55–78. Springer (2006)

    Google Scholar 

  24. Woo, S., Rothemund, P.W.K.: Stacking bonds: Programming molecular recognition based on the geometry of dna nanostructures. Nature Chemistry 3, 620–627 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fu, B., Patitz, M.J., Schweller, R.T., Sheline, R. (2012). Self-assembly with Geometric Tiles. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics