Abstract
The Multicut problem, given a graph G, a set of terminal pairs \(\ensuremath{\mathcal{T}}=\{(s_i,t_i)\ |\ 1\leq i\leq r\}\) and an integer p, asks whether one can find a cutset consisting of at most p non-terminal vertices that separates all the terminal pairs, i.e., after removing the cutset, t i is not reachable from s i for each 1 ≤ i ≤ r. The fixed-parameter tractability of Multicut in undirected graphs, parameterized by the size of the cutset only, has been recently proven by Marx and Razgon [2] and, independently, by Bousquet et al. [3], after resisting attacks as a long-standing open problem. In this paper we prove that Multicut is fixed-parameter tractable on directed acyclic graphs, when parameterized both by the size of the cutset and the number of terminal pairs. We complement this result by showing that this is implausible for parameterization by the size of the cutset only, as this version of the problem remains W[1]-hard.
The full version of this paper is available online [1].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Fixed-parameter tractability of multicut in directed acyclic graphs. CoRR, abs/1202.5749 (2012)
Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. In: Proc. of STOC 2011, pp. 469–478 (2011)
Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proc. of STOC 2011, pp. 459–468 (2011)
Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3), 394–406 (2006)
Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5) (2008)
Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset Feedback Vertex Set is Fixed-Parameter Tractable. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 449–461. Springer, Heidelberg (2011)
Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009)
Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum node multiway cut problem. Algorithmica 55(1), 1–13 (2009)
Guillemot, S.: FPT algorithms for path-transversal and cycle-transversal problems. Discrete Optimization 8(1), 61–71 (2011)
Lokshtanov, D., Marx, D.: Clustering with Local Restrictions. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 785–797. Springer, Heidelberg (2011)
Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset. In: Proc. of SODA 2012, pp. 1713–1725 (2012)
Bentz, C.: On the hardness of finding near-optimal multicuts in directed acyclic graphs. Theor. Comput. Sci. 412(39), 5325–5332 (2011)
Cygan, M., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Clique cover and graph separation: New incompressibility results. CoRR abs/1111.0570 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M. (2012). Fixed-Parameter Tractability of Multicut in Directed Acyclic Graphs. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-31594-7_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31593-0
Online ISBN: 978-3-642-31594-7
eBook Packages: Computer ScienceComputer Science (R0)