Fixed-Parameter Tractability of Multicut in Directed Acyclic Graphs | SpringerLink
Skip to main content

Fixed-Parameter Tractability of Multicut in Directed Acyclic Graphs

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

Abstract

The Multicut problem, given a graph G, a set of terminal pairs \(\ensuremath{\mathcal{T}}=\{(s_i,t_i)\ |\ 1\leq i\leq r\}\) and an integer p, asks whether one can find a cutset consisting of at most p non-terminal vertices that separates all the terminal pairs, i.e., after removing the cutset, t i is not reachable from s i for each 1 ≤ i ≤ r. The fixed-parameter tractability of Multicut in undirected graphs, parameterized by the size of the cutset only, has been recently proven by Marx and Razgon [2] and, independently, by Bousquet et al. [3], after resisting attacks as a long-standing open problem. In this paper we prove that Multicut is fixed-parameter tractable on directed acyclic graphs, when parameterized both by the size of the cutset and the number of terminal pairs. We complement this result by showing that this is implausible for parameterization by the size of the cutset only, as this version of the problem remains W[1]-hard.

The full version of this paper is available online [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Fixed-parameter tractability of multicut in directed acyclic graphs. CoRR, abs/1202.5749 (2012)

    Google Scholar 

  2. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. In: Proc. of STOC 2011, pp. 469–478 (2011)

    Google Scholar 

  3. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proc. of STOC 2011, pp. 459–468 (2011)

    Google Scholar 

  4. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3), 394–406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5) (2008)

    Google Scholar 

  6. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset Feedback Vertex Set is Fixed-Parameter Tractable. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 449–461. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum node multiway cut problem. Algorithmica 55(1), 1–13 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guillemot, S.: FPT algorithms for path-transversal and cycle-transversal problems. Discrete Optimization 8(1), 61–71 (2011)

    Article  MathSciNet  Google Scholar 

  10. Lokshtanov, D., Marx, D.: Clustering with Local Restrictions. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 785–797. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset. In: Proc. of SODA 2012, pp. 1713–1725 (2012)

    Google Scholar 

  12. Bentz, C.: On the hardness of finding near-optimal multicuts in directed acyclic graphs. Theor. Comput. Sci. 412(39), 5325–5332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cygan, M., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Clique cover and graph separation: New incompressibility results. CoRR abs/1111.0570 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M. (2012). Fixed-Parameter Tractability of Multicut in Directed Acyclic Graphs. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics