Abstract
The effectiveness of a multibiometric system can be improved by weighting the scores obtained from the degraded modalities in an appropriate manner. In this paper, we propose an integration weight optimization scheme to determine the optimal weight factor for the complementary modalities, under different noise conditions. Instead of treating the weight estimation process from an algebraic point of view, an attempt is made to consider the same from the principles of linear programming techniques. The performance of the proposed technique is analysed in the context of fingerprint and voice biometrics using sum rule of fusion. The weight factor is optimized against the recognition accuracy. The optimizing parameter is estimated in the training/ validation phase using Leave-One-Out Cross Validation (LOOCV) technique. The proposed biometric solution can be be easily integrated into any multibiometric system with score level fusion. More over, it finds extremely useful in applications where there are less number of available training samples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kekre, H.B., Bharadi, V.A.: Ageing Adaptation for Multimodal Biometrics using Adaptive Feature Set Update Algorithm. In: IEEE International Advance Computing Conference (IACC 2009), Patiala, India, March 6-7 (2009)
Toh, K.-A.: Fingerprint and speaker verification decisions fusion. In: International Conference on Image Analysis and Processing (ICIAP), Mantova, Italy, pp. 626–631 (September 2003)
Rajavel, R., Sathidevi, P.S.: Adaptive Reliability Measure and Optimum Integration Weight for Decision Fusion Audio-visual Speech Recognition. Springer J. Sign. Process. Syst. (February 2011)
Rajavel, R., Sathidevi, P.S.: The Effect of Reliability Measure on Integration Weight Estimation in Audio-Visual Speech Recognition. International Journal of Engineering Science and Technology 2(8) (2010)
Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer, New York (2006)
Wuzhili: Finger Print Recognition, Honors Thesis (2002)
Reynolds, D.: Gaussian Mixture Models* MIT Lincoln Laboratory, 244 Wood St., Lexington, MA 02140, USA
Kim, J.: Iterated Grid Search Algorithm on Unimodal Criteria. Ph.D. Thesis, Blacksburg, Virginia (1997)
Yang, W.Y., Cao, W., Chung, T.-S., Morris, J.: Applied Numerical Methods using Matlab. Wiley, India (2007)
FVC 2002, the second International Competition for Fingerprint Verification Algorithms, FVC 2002 (2002), http://bias.csr.unibo.it/fvc2002/
Feng, L.: Speaker Recognition, Informatics and Mathematical Modelling, Technical University of Denmark, DTU (2004)
Martin, A., Doddington, G., Kamm, T., Ordowsk, M., Przybocki, M.: The DET Curve in Assessment of Detection Task Performance. In: Proc. Eurospeech 1997, Rhodes, pp. 1895–1898 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Anzar, S.M., Sathidevi, P.S. (2013). Optimization of Integration Weights for a Multibiometric System with Score Level Fusion. In: Meghanathan, N., Nagamalai, D., Chaki, N. (eds) Advances in Computing and Information Technology. Advances in Intelligent Systems and Computing, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31552-7_85
Download citation
DOI: https://doi.org/10.1007/978-3-642-31552-7_85
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31551-0
Online ISBN: 978-3-642-31552-7
eBook Packages: EngineeringEngineering (R0)