Human-Centered Text Mining: A New Software System | SpringerLink
Skip to main content

Human-Centered Text Mining: A New Software System

  • Conference paper
Advances in Data Mining. Applications and Theoretical Aspects (ICDM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7377))

Included in the following conference series:

Abstract

In this paper we introduce a novel human-centered data mining software system which was designed to gain intelligence from unstructured textual data. The architecture takes its roots in several case studies which were a collaboration between the Amsterdam-Amstelland Police, GasthuisZusters Antwerpen (GZA) hospitals and KU Leuven. It is currently being implemented by bachelor and master students of Moscow Higher School of Economics. At the core of the system are concept lattices which can be used to interactively explore the data. They are combined with several other complementary statistical data analysis techniques such as Emergent Self Organizing Maps and Hidden Markov Models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cimiano, P., Hotho, A., Staab, S.: Learning Concept Hierarchies from Text Corpora using Formal Concept Analysis. J. Artif. Intell. Res (JAIR) 24, 305–339 (2005)

    MATH  Google Scholar 

  2. Collier, P.M.: Policing and the intelligent application of knowledge. Public Money & Management 26(2), 109–116 (2006)

    Article  Google Scholar 

  3. Elzinga, P., Poelmans, J., Viaene, S., Dedene, G., Morsing, S.: Terrorist threat assessment with Formal Concept Analysis. In: Proc. IEEE International Conference on Intelligence and Security Informatics, Vancouver, Canada, May 23-26, pp. 77–82 (2010)

    Google Scholar 

  4. Elzinga, P., Wolff, K.E., Poelmans, J., Viaene, S., Dedene, G.: Analyzing chat conversations of arrested child abusers with temporal relational semantic systems. In: Contributions to 10th International Conference on Formal Concept Analysis, Leuven, Belgium, May 6-10 (2012)

    Google Scholar 

  5. Keus, R., Kruijff, M.S.: Huiselijk geweld, draaiboek voor de aanpak. Directie Preventie, Jeugd en Sanctiebeleid van de Nederlandse justitie (2000)

    Google Scholar 

  6. Maio, C.D., Fenza, G., Gaeta, M., Loia, V., Orciuoli, F., Senatore, S.: RSS-based e-learning recommendations exploiting fuzzy FCA for Knowledge Modeling. Applied Soft Computing 12(1), 113–124 (2012)

    Article  Google Scholar 

  7. Poelmans, J., Dedene, G., Verheyden, G., Van der Mussele, H., Viaene, S., Peters, E.: Combining Business Process and Data Discovery Techniques for Analyzing and Improving Integrated Care Pathways. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 505–517. Springer, Heidelberg (2010c)

    Chapter  Google Scholar 

  8. Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: A Case of Using Formal Concept Analysis in Combination with Emergent Self Organizing Maps for Detecting Domestic Violence. In: Perner, P. (ed.) ICDM 2009. LNCS, vol. 5633, pp. 247–260. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Curbing domestic violence: Instantiating C-K theory with Formal Concept Analysis and Emergent Self Organizing Maps. Intelligent Systems in Accounting, Finance and Management 17(3-4), 167–191 (2010a)

    Article  Google Scholar 

  10. Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal Concept Analysis in Knowledge Discovery: A Survey. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 139–153. Springer, Heidelberg (2010b)

    Chapter  Google Scholar 

  11. Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formally Analyzing the Concepts of Domestic Violence. Expert Systems with Applications 38(4), 3116–3130 (2011a)

    Article  Google Scholar 

  12. Poelmans, J., Elzinga, P., Dedene, G., Viaene, S., Kuznetsov, S.O.: A Concept Discovery Approach for Fighting Human Trafficking and Forced Prostitution. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS-ConceptStruct 2011. LNCS, vol. 6828, pp. 201–214. Springer, Heidelberg (2011b)

    Chapter  Google Scholar 

  13. Poelmans, J., Ignatov, D.I., Viaene, S., Dedene, G., Kuznetsov, S.: Text mining scientific papers: a survey on FCA-based information retrieval research. In: 12th Industrial Conference on Data Mining. LNCS, July 13-20, Berlin, Germany. Springer (2012)

    Google Scholar 

  14. Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  15. Stumme, G., Wille, R., Wille, U.: Conceptual Knowledge Discovery in Databases using Formal Concept Analysis Methods. In: PKDD 1998. LNCS, vol. 1510, pp. 450–458. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  16. Ultsch, A.: Maps for visualization of high-dimensional Data Spaces. In: Proc. WSOM 2003, Kyushu, Japan, pp. 225–230 (2003)

    Google Scholar 

  17. Ultsch, A., Hermann, L.: Architecture of emergent self-organizing maps to reduce projection errors. In: Proc. ESANN 2005, pp. 1–6 (2005)

    Google Scholar 

  18. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston (1982)

    Google Scholar 

  19. Wolff, K.E.: States, Transitions, and Life Tracks in Temporal Concept Analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 127–148. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Poelmans, J., Elzinga, P., Neznanov, A.A., Dedene, G., Viaene, S., Kuznetsov, S.O. (2012). Human-Centered Text Mining: A New Software System. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2012. Lecture Notes in Computer Science(), vol 7377. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31488-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31488-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31487-2

  • Online ISBN: 978-3-642-31488-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics