The QMLTP Problem Library for First-Order Modal Logics | SpringerLink
Skip to main content

The QMLTP Problem Library for First-Order Modal Logics

  • Conference paper
Automated Reasoning (IJCAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7364))

Included in the following conference series:

Abstract

The Quantified Modal Logic Theorem Proving (QMLTP) library provides a platform for testing and evaluating automated theorem proving (ATP) systems for first-order modal logics. The main purpose of the library is to stimulate the development of new modal ATP systems and to put their comparison onto a firm basis. Version 1.1 of the QMLTP library includes 600 problems represented in a standardized extended TPTP syntax. Status and difficulty rating for all problems were determined by running comprehensive tests with existing modal ATP systems. In the presented version 1.1 of the library the modal logics K, D, T, S4 and S5 with constant, cumulative and varying domains are considered. Furthermore, a small number of problems for multi-modal logic are included as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balsiger, P., Heuerding, A., Schwendimann, S.: A Benchmark Method for the Propositional Modal Logics K, KT, S4. Journal of Automated Reasoning 24, 297–317 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benzmüller, C.E., Paulson, L.C: Quantified Multimodal Logics in Simple Type Theory. Seki Report SR-2009-02, Saarland University (2009) ISSN 1437-4447

    Google Scholar 

  3. Benzmüller, C.E., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - A Cooperative Automatic Theorem Prover for Classical Higher-Order Logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Blackburn, P., van Bentham, J., Wolter, F.: Handbook of Modal Logic. Elsevier, Amsterdam (2006)

    Google Scholar 

  5. Boeva, V., Ekenberg, L.: A Transition Logic for Schemata Conflicts. Data & Knowledge Engineering 51(3), 277–294 (2004)

    Article  Google Scholar 

  6. Brown, C.E.: Reducing Higher-Order Theorem Proving to a Sequence of SAT Problems. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 147–161. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: Effective First-Order Query Processing in Description Logics. In: Veloso, M.M. (ed.) IJCAI 2007, pp. 274–279 (2007)

    Google Scholar 

  8. Fariñas del Cerro, L., Herzig, A., Longin, D., Rifi, O.: Belief Reconstruction in Cooperative Dialogues. In: Giunchiglia, F. (ed.) AIMSA 1998. LNCS (LNAI), vol. 1480, pp. 254–266. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Fitting, M.: Types, Tableaus, and Goedel’s God. Kluwer, Amsterdam (2002)

    Book  MATH  Google Scholar 

  10. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer, Amsterdam (1998)

    Book  MATH  Google Scholar 

  11. Forbes, G.: Modern Logic. A Text in Elementary Symbolic Logic. OUP, Oxford (1994)

    MATH  Google Scholar 

  12. Girle, R.: Modal Logics and Philosophy. Acumen Publ. (2000)

    Google Scholar 

  13. Gödel, K.: An Interpretation of the Intuitionistic Sentential Logic. In: Hintikka, J. (ed.) The Philosophy of Mathematics, pp. 128–129. Oxford University Press, Oxford (1969)

    Google Scholar 

  14. Massacci, F., Donini, F.M.: Design and Results of TANCS-2000 Non-classical (Modal) Systems Comparison. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 50–56. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Otten, J.: Implementing Connection Calculi for First-order Modal Logics. In: 9th International Workshop on the Implementation of Logics (IWIL 2012), Merida, Venezuela (2012)

    Google Scholar 

  16. Patel-Schneider, P.F., Sebastiani, R.: A New General Method to Generate Random Modal Formulae for Testing Decision Procedures. Journal of Articial Intelligence Research 18, 351–389 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Popcorn, S.: First Steps in Modal Logic. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  18. Raths, T., Otten, J., Kreitz, C.: The ILTP Problem Library for Intuitionistic Logic. Journal of Automated Reasoning 38(1-3), 261–271 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Reiter, R.: What Should a Database Know? Journal of Logic Programming 14(1-2), 127–153 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sider, T.: Logic for Philosophy. Oxford University Press, Oxford (2009)

    Google Scholar 

  21. Stone, M.: Abductive Planning With Sensing. In: AAAI 1998, Menlo Park, CA, pp. 631–636 (1998)

    Google Scholar 

  22. Stone, M.: Towards a Computational Account of Knowledge, Action and Inference in Instructions. Journal of Language and Computation 1, 231–246 (2000)

    Google Scholar 

  23. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

    Article  MATH  Google Scholar 

  24. Sutcliffe, G.: The 5th IJCAR automated theorem proving system competition – CASC-J5. AI Communications 24(1), 75–89 (2011)

    MathSciNet  Google Scholar 

  25. Thion, V., Cerrito, S., Cialdea Mayer, M.: A General Theorem Prover for Quantified Modal Logics. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 266–280. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raths, T., Otten, J. (2012). The QMLTP Problem Library for First-Order Modal Logics. In: Gramlich, B., Miller, D., Sattler, U. (eds) Automated Reasoning. IJCAR 2012. Lecture Notes in Computer Science(), vol 7364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31365-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31365-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31364-6

  • Online ISBN: 978-3-642-31365-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics