Reflectance Estimation Using Local Regression Methods | SpringerLink
Skip to main content

Reflectance Estimation Using Local Regression Methods

  • Conference paper
Advances in Neural Networks – ISNN 2012 (ISNN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7367))

Included in the following conference series:

Abstract

Regression methods have been widely used in the problem of spectral reflectance estimation from camera responses, due to their simple application without needing prior knowledge of the imaging system. These methods can be called global regression methods since the regression functions are trained on all the training samples. Recently, local learning methods have received considerable attention due to their capability in exploiting the local manifold structure of data. In this paper, we propose a set of reflectance estimation methods based on local regression methods. These methods can be seen as the local versions of the traditional global regression methods. The training set is confined to the test point’s k-nearest neighbors. Experimental results show that the local ridge regression has the best generalization performance in the compared methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hardeberg, J.Y.: Filter Selection for Multispectral Color Image Acquistion. J. Imaging Sci. Technol. 48, 105–110 (2004)

    Google Scholar 

  2. Connah, D., Hardeberg, J.Y.: Spectral Recovery Using Polynomial Models. In: Proc. SPIE, vol. 5667, pp. 65–75 (2005)

    Google Scholar 

  3. Shimano, N., Terai, K., Hironaga, M.: Recovery of Spectral Reflectances of Objects being Imaged by Multispectral Cameras. J. Opt. Soc. Am. A 24, 3211–3219 (2007)

    Article  Google Scholar 

  4. Shen, H.L., Xin, J.H.: Estimation of Spectral Reflectance of Object Surfaces with the Consideration of Perceptual Color Space. Opt. Lett. 32, 96–98 (2007)

    Article  Google Scholar 

  5. Heikkinen, V., Jetsu, T., Parkkinen, J., Hauta-Kasari, M., Jaaskelainen, T., Lee, S.D.: Regularized Learning Framework in the Estimation of Reflectance Spectra from Camera Responses. J. Opt. Soc. Am. A 24, 2673–2683 (2007)

    Article  Google Scholar 

  6. Zhang, W.F., Dai, D.Q.: Spectral Reflectance Estimation from Camera Responses by Support Vector Regression and a Composite Model. J. Opt. Soc. Am. A 25, 2286–2296 (2008)

    Article  Google Scholar 

  7. Lansel, S., Parmar, M., Wandell, B.A.: Dictionaries for Sparse Representation and Recovery of Reflectances. In: Proc. SPIE, Comp. Imaging VII., vol. 7246, p. 72460D (2009)

    Google Scholar 

  8. Zhang, W.F., Tang, G., Dai, D.Q., Nehorai, A.: Estimation of Reflectance from Cameara Responses by the Regularized Local Linear Model. Opt. Lett. 36, 3933–3935 (2011)

    Article  Google Scholar 

  9. Lansel, S.: Local Linear Learned Method for Image and Reflectance Estimation. Doctoral Dissertation, Standford University (2011)

    Google Scholar 

  10. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  11. Wu, M., Schölkopf, B.: A Local Learning Approach for Clustering. In: Advances in Neural Information Processing Systems 19, pp. 1529–1536. MIT Press (2007)

    Google Scholar 

  12. Gupta, M.R., Garcia, E.K., Chin, E.: Adaptive Local Linear Regression with Application to Printer Color Mangement. IEEE T. Image. Process. 17, 936–945 (2008)

    Article  MathSciNet  Google Scholar 

  13. Ladický, L., Torr, P.H.S.: Locally Linear Support Vector Machines. In: Proceddings of the 28th International Conference on Machine Learning (2011)

    Google Scholar 

  14. Spectral Database. University of Joensuu Color Group, http://spectral.joensuu.fi/

  15. Barnard, K., Martin, L., Funt, B., Coath, A.: A Data Set for Color Research. Color Res. Appl. 27, 147–151 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, WF., Yang, P., Dai, DQ., Nehorai, A. (2012). Reflectance Estimation Using Local Regression Methods. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds) Advances in Neural Networks – ISNN 2012. ISNN 2012. Lecture Notes in Computer Science, vol 7367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31346-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31346-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31345-5

  • Online ISBN: 978-3-642-31346-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics