Rectangular Discrete Radon Transform for Buildings Extraction from High Resolution Satellite Images | SpringerLink
Skip to main content

Rectangular Discrete Radon Transform for Buildings Extraction from High Resolution Satellite Images

  • Conference paper
Image Analysis and Recognition (ICIAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7324))

Included in the following conference series:

  • 2101 Accesses

Abstract

This paper presents a new approach titled Rectangular Discrete Radon Transform (RDRT) which is based on the generalization of the classical Radon transform to project the images with rectangular objects instead of straight lines. The RDRT was conceived to accurately locate and recognize Rectangular Buildings from high resolution satellite images. Experimental results show the efficiency of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wei, Y., Zhao, Z., Song, J.: Urban Building Extraction From High Resolution Satellite panchromatic image using clustering and edge detection. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 2008–2010 (2004)

    Google Scholar 

  2. Muller, S., Zaum, D.W.: Robust building detection in aerial images. International Archives of Photogrammetry and Remote Sensing, 143–148 (2005)

    Google Scholar 

  3. Chanussot, J., Benediktsson, J.A., Fauvel, M.: Classification of remote sensing images from urban areas using a fuzzy possibilistic model. IEEE Geoscience and Remote Sensing Letters, 40–44 (2006)

    Google Scholar 

  4. Lhomme, S., He, D.C., Weber, C., Morin, D.: A new approach to buildings identification from very-high-spatial-resolution images. International Journal of Remote Sensing, 30–36 (2009)

    Google Scholar 

  5. Karantzalos, K., Paragios, N.: Automatic model-based building detection from single panchromatic high resolution images. International Archives of the Photogrammetry. Remote Sensing & Spatial Information Sciences 37, 225–230 (2008)

    Google Scholar 

  6. Taillandier, F.: Automatic building reconstruction from cadastral maps and aerial images. International Archives of Photogrammetry and Remote Sensing, 105–110 (2005)

    Google Scholar 

  7. Ortner, M., Descombes, X., Zerubia, J.: Building outline extraction from digital elevation models using marked point processes. International Journal of Computer Vision 72, 107–132 (2007)

    Article  Google Scholar 

  8. Koc San, D., Turker, M.: Automatic Building Detection and Delineation From High Resolution Space Images Using Model-Based Approach. In: ISPRS Workshop on Topographic Mapping from Space (2006)

    Google Scholar 

  9. Bouziani, M., Goita, K., He, D.C.: Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge. Journal of Photogrammetry and Remote Sensing 65, 143–153 (2009)

    Article  Google Scholar 

  10. Tofts, P.: The RadonTtransform: Theory and implementation. Ph.D.Thesis (1996)

    Google Scholar 

  11. Radon, J.: Ber die Bestimmung von Funktionen durch ihre Integralwerte lngs gewisser Mannigfaltigkeiten, Berichte Schsische Akademie der Wissenschaften. Mathematisch-Physikalische Leipzig 69, 262–277 (1917)

    Google Scholar 

  12. Magli, E., Olmo, G., LoPresti, L.: Pattern recognition by means of the Radon transform and the continuous wavelet transform. Signal Processing, 73 (1998)

    Google Scholar 

  13. Milanfar, P.: A model of the effect of image motion in the Radon transform domain. IEEE Transactions on Image Processing 8, 1276–1281 (1999)

    Article  Google Scholar 

  14. Rosenfeld, A., Kak, A.C.: Digital Picture Processing, 2nd edn., vol. 1. Academic Press (1982)

    Google Scholar 

  15. Deans, S.: The Radon Transform and Some of Its Applications. Wiley, New York (1983)

    MATH  Google Scholar 

  16. Wang, L., Hao, Y.: Radon Transform and Forstner Operator Applying in Buildings Contour Extraction. In: Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 5 (2009)

    Google Scholar 

  17. Beylkin, G.: Discrete Radon transform. IEEE Transactions. Acoustics, Speech and Signal Processing 35, 162–172 (1987)

    Article  MathSciNet  Google Scholar 

  18. Mukhopadhyay, S., Chanda, B.: An edge preserving noise smoothing technique using multi-scale morphology. Signal Processing 82, 527–544 (2002)

    Article  MATH  Google Scholar 

  19. Mayunga, S.D., Zhang Y., Coleman, D.J.: Semi-Automatic Building Extraction Utilizing Quickbird Imagery. In: CMRT 2005, IAPRS, 36, Part 3 (2005)

    Google Scholar 

  20. Hamouda, A., Rojbani, H., Elouedi, I.: A new shape descriptor based on the Radon transform: the Rθ-signature. Accepted paper in International Conference on Signal, Image Processing and Applications ICSIA (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ines, E., Atef, H., Hmida, R. (2012). Rectangular Discrete Radon Transform for Buildings Extraction from High Resolution Satellite Images. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31295-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31295-3_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31294-6

  • Online ISBN: 978-3-642-31295-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics