Smooth Component Analysis and MSE Decomposition for Ensemble Methods | SpringerLink
Skip to main content

Smooth Component Analysis and MSE Decomposition for Ensemble Methods

  • Conference paper
Agent and Multi-Agent Systems. Technologies and Applications (KES-AMSTA 2012)

Abstract

The paper is addressed to economic problems for which many different models can be proposed. In such situation the ensemble approach is natural way to improve the final prediction results. In particular, we present the method for the prediction improvement with ensemble method based on the multivariate decompositions. As a method for model results decomposition we present the smooth component analysis. The resulting components are classified as destructive and removed, or as constructive and recomposed. The classification of the components is based on the theoretical analysis of MSE error measure. The robustness of the method is validated through practical experiment of energy load consumption in Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Cardoso, J.F.: High-order contrasts for independent component analysis. Neural Computation 11, 157–192 (1999)

    Article  Google Scholar 

  3. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)

    Book  Google Scholar 

  4. Golub, G.H., Van-Loan, C.F.: Matrix Computations. Johns Hopkins (1996)

    Google Scholar 

  5. Haykin, S.: Neural networks: a comprehensive foundation. Macmillan, New York (1994)

    MATH  Google Scholar 

  6. Hoeting, J., Modigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial. Statistical Science 14, 382–417 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley (2001)

    Google Scholar 

  8. Lendasse, A., Cottrell, M., Wertz, V., Verdleysen, M.: Prediction of Electric Load using Kohonen Maps – Application to the Polish Electricity Consumption. In: Proc. of Am. Control Conf., Anchorage AK, pp. 3684–3689 (2002)

    Google Scholar 

  9. Lee, D.D., Seung, H.S.: Learning of the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  10. Li, Y., Cichocki, A., Amari, S.: Sparse component analysis for blind source separation with less sensors than sources. In: Fourth Int. Symp. on ICA and Blind Signal Separation, Nara, Japan, pp. 89–94 (2003)

    Google Scholar 

  11. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  12. Stone, J.V.: Blind Source Separation Using Temporal Predictability. Neural Computation 13(7), 1559–1574 (2001)

    Article  MATH  Google Scholar 

  13. Szupiluk, R., Wojewnik, P., Zabkowski, T.: Model Improvement by the Statistical Decomposition. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1199–1204. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Szupiluk, R., Wojewnik, P., Ząbkowski, T.: Smooth Component Analysis as Ensemble Method for Prediction Improvement. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 277–284. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Yang, Y.: Adaptive regression by mixing. Journal of American Statistical Association 96, 574–588 (2001)

    Article  MATH  Google Scholar 

  16. ForexNewsNow: Automated Trading: Pros and Cons (published July 7, 2011), http://forexnewsnow.com/forex-brokers/automated-trading-pros-and-cons/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szupiluk, R., Wojewnik, P., Ząbkowski, T. (2012). Smooth Component Analysis and MSE Decomposition for Ensemble Methods. In: Jezic, G., Kusek, M., Nguyen, NT., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems. Technologies and Applications. KES-AMSTA 2012. Lecture Notes in Computer Science(), vol 7327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30947-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30947-2_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30946-5

  • Online ISBN: 978-3-642-30947-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics