Robust Sensor Range for Constructing Strongly Connected Spanning Digraphs in UDGs | SpringerLink
Skip to main content

Robust Sensor Range for Constructing Strongly Connected Spanning Digraphs in UDGs

  • Conference paper
Computer Science – Theory and Applications (CSR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7353))

Included in the following conference series:

Abstract

We study the following problem: Given a set of points in the plane and a positive integer k > 0, construct a geometric strongly connected spanning digraph of out-degree at most k and whose longest edge length is the shortest possible. The motivation comes from the problem of replacing omnidirectional antennae in a sensor network with k directional antennae per sensor so that the resulting sensor network is strongly connected. The contribution of this is paper is twofold:

1) We introduce a notion of robustness of the radius in geometric graphs. This allows us to provide stronger lower bounds for the edge length needed to solve our problem, while nicely connecting two previously unrelated research directions (graph toughness and multiple directional antennae).

2) We present novel upper bound techniques which, in combination with stronger lower bounds, allow us to improve the previous approximation results for the edge length needed to achieve strong connectivity for k = 4 (from 2sin(π/5) to optimal) and k = 3 (from \(2\sin(\frac{\pi}{4})\) to \(2\sin(\frac{2\pi}{9})\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bauer, D., Broersma, H., Schmeichel, E.: Toughness in graphs–a survey. Graphs and Combinatorics 22(1), 1–35 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communication in wireless networks with directional antennae. In: 20th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2008), Munich, Germany, June 14-16, pp. 344–351. IEEE/ACM (2008)

    Google Scholar 

  3. Dobrev, S., Kranakis, E., Krizanc, D., Opatrny, J., Ponce, O.M., Stacho, L.: Strong Connectivity in Sensor Networks with Given Number of Directional Antennae of Bounded Angle. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 72–86. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Francke, A., Hoffmann, M.: The euclidean degree-4 minimum spanning tree problem is np-hard. In: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 179–188. ACM (2009)

    Google Scholar 

  5. Kranakis, E., Krizanc, D., Morales, O.: Maintaining connectivity in sensor networks using directional antennae. In: Nikoletseas, S., Rolim, J. (eds.) Theoretical aspects of Distributed Computing in Sensor Networks, ch. 3, pp. 59–84. Springer (2010) ISBN 978-3-642-14848-4

    Google Scholar 

  6. Monma, C., Suri, S.: Transitions in geometric minimum spanning trees. Discrete and Computational Geometry 8(1), 265–293 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Papadimitriou, C.H.: The euclidean travelling salesman problem is np-complete. Theoretical Computer Science 4(3), 237–244 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Parker, R.G., Rardin, R.L.: Guaranteed performance heuristics for the bottleneck traveling salesman problem. Operations Research Letters 2(6), 269–272 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern Recognition 12(4), 261–268 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dobrev, S., Kranakis, E., Ponce, O.M., Plžík, M. (2012). Robust Sensor Range for Constructing Strongly Connected Spanning Digraphs in UDGs. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds) Computer Science – Theory and Applications. CSR 2012. Lecture Notes in Computer Science, vol 7353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30642-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30642-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30641-9

  • Online ISBN: 978-3-642-30642-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics