Relevant Feature Selection from EEG Signal for Mental Task Classification | SpringerLink
Skip to main content

Relevant Feature Selection from EEG Signal for Mental Task Classification

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7302))

Included in the following conference series:

Abstract

In last few years, the research community has shown interest in the development of Brain Computer Interface which may assists physically challenged people to communicate with the help of brain signal. The two important components of such BCI system are to determine appropriate features and classification method to achieve better performance. In literature, Empirical Mode Decomposition is suggested for feature extraction from EEG which is suitable for the analysis of non-linear and non-stationary time series. However, the features obtained from EEG may contain irrelevant and redundant features which make them inefficient for machine learning. Relevant features not only decrease the processing time to train a classifier but also provide better generalization. Hence, relevant features which provide maximum classification accuracy are selected using ratio of scatter matrices, Chernoff distance measure and linear regression. The performance of different mental task using different measures used for feature selection is compared and evaluated in terms of classification accuracy. Experimental results show that there is significant improvement in classification accuracy with features selected using all feature selection methods and in particular with ratio of scatter matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, W.C., Stolz, E.A., Shamsunder, S.: Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks. IEEE Trans. Biomed. Eng. 45(3), 277–286 (1998)

    Article  Google Scholar 

  2. Babiloni, F., Cincotti, F., Lazzarini, L., Millan, J., Mourino, J., Varsta, M., Heikkonen, J., Bianchi, L., Marciani, M.G.: Linear classification of low-resolution EEG patterns produced by imagined hand movements. IEEE Trans. Rehabil. Eng. 8(2), 186–188 (2000)

    Article  Google Scholar 

  3. Basseville, M., Benveniste, A.: Sequential segmentation of nonstationary digital signals using spectral analysis. Information Science 29(1), 57–73 (1983)

    Article  MATH  Google Scholar 

  4. Richard, O., Peter, E., David, G.: Pattern Classification, 2nd edn. Wiley India (P) Ltd

    Google Scholar 

  5. Diez, P.F., Mut, V., Laciar, E.: A location of the empirical mode decomposition to the extraction of features from EEG signals for mental task classification. In: 31st Annual Int. Conference of the IEEE EMBS, Minnesota, pp. 2579–2582 (2009)

    Google Scholar 

  6. Fisher, A.R.: The use of multiple measurements in taxonomic problems. Ann. Eugen 7, 179–188 (1936)

    Article  Google Scholar 

  7. Freeman, W.J.: Comparison of brain models for active vs. passive perception. Information Science 116, 97–107 (1999)

    Article  Google Scholar 

  8. Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 141–144 (2003)

    Article  Google Scholar 

  9. Graimann, B., Huggins, J.E., Schlogl, A., Levine, S.P., Pfurtscheller, G.: Detection of movement-related desynchronization patterns in ongoing single-channel electrocardiogram. IEEE Trans. Neural Syst. Rehabil. Eng. 11(3), 276–281 (2003)

    Article  Google Scholar 

  10. Guyon, I., Elisseeff, A.: An Introduction to Variable and feature Selection. Machine Learning Research (3), 1157–1182 (2003)

    Google Scholar 

  11. Guyon, I., Weston, J., Bernhill, S., Vapnik, V.: Gene Selection for cancer classification using support vector machine. Machine Learning (46), 389–422 (2002)

    Google Scholar 

  12. Huang, N.E., Shen, Z., Long, S.R., Wu, M.L., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. London A 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kauhanen, L., Nykopp, T., Lehtonen, J., Jylanki, P., Heikkonen, J., Rantanen, P., Alaranta, H., Sams, M.: EEG and MEG brain-computer interface for tetraplegic patients. IEEE Trans. Neural Syst. Rehalil. Eng. 14(2), 190–193 (2006)

    Article  Google Scholar 

  14. Kohavi, R., John, G.: Wrapper for feature subset selection. Artificial Intelligence (1-2), 273–324 (1997)

    Google Scholar 

  15. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inform. Theory IT-22, 75–81 (1976)

    Article  MathSciNet  Google Scholar 

  16. Lingras, P., Butz, C.: Rough set based 1-v-1 and 1-v-r a roaches to support vector machine multi-classification. Information Science 177, 3782–3798 (2007)

    Article  Google Scholar 

  17. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain computer interfaces. Neural Eng. 4, R1–R13 (2007)

    Article  Google Scholar 

  18. Muller, K.-R., Anderson, C.W., Birch, G.E.: Linear and non-linear methods for brain computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 165–169 (2003)

    Article  Google Scholar 

  19. Park, H.-S., Yoo, S.-H.-Y., Cho, S.-B.: Forward selection Method with regression analysis for optimal gene selection in cancer classification. International Journal of Computer Mathematics 84(5), 653–668 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pfurtscheller, G., Neuper, C., Schlogl, A., Lugger, K.: Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans. Rehabil. Eng. 6(3), 316–325 (1998)

    Article  Google Scholar 

  21. Pierre, A.D., Kittler, J.: Pattern Recognition: A Statistical Approach. PHI (1982)

    Google Scholar 

  22. Ruiz, R., Riquelme, J.C., Ruiz, S.A.: Incremental wrapper based gene selection from microarray data for cancer classification. Pattern Recognition 39(12), 2383–2392 (2006)

    Article  Google Scholar 

  23. Shannon, C.E.: A Mathematical Theory of Communication. ATT Tech. J. 27, 379–423, 623–656 (1948)

    Google Scholar 

  24. Tibshiran, R., Hastie, T., Narasimha, B., Chu, G.: Diagnosis of multiple cancer types by shrunken centriods of gene expression. Proc. Natl. Acad. Sci., USA (99), 6567–6572 (2002)

    Google Scholar 

  25. Tsai, C.-Y.: On detecting nonlinear patterns in discriminate problems. Information Science 176, 772–798 (2006)

    Article  MATH  Google Scholar 

  26. Tsoi, A.C., So, D.S.C., Sergejew, A.: Classification of electroencephalogram using artificial neural networks. In: Advances Neural Information Processing Systems, vol. 6, pp. 1151–1158. Morgan Kaufman, San Francisco (1994)

    Google Scholar 

  27. Yom-Tov, E., Inbar, G.F.: Feature selection for the classification of movements from single movement-related potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 10(3), 170–177 (2002)

    Article  Google Scholar 

  28. Zachary, A.K., Jorge, I.A.: A new mode of communication between man and his surroundings. IEEE Transactions on Biomedical Engineering 37(12), 1209–1214 (1990)

    Article  Google Scholar 

  29. Zachary, A.K.: Alternative modes of communication between man and machine. Master’s thesis, Purdue University (1988)

    Google Scholar 

  30. Zhang, X.S., Roy, R.J., Jensen, E.W.: EEG complexity as a measure of depth anesthesia for patients. IEEE Trans. Biomed. Eng. (48), 1424–1433 (2001)

    Google Scholar 

  31. Zhou, S.M., Gan, J.Q.: Constructing parsimonious fuzzy classifiers based on L2-SVM in high-dimensional space with automatic model selection and fuzzy rule ranking. IEEE Trans. Fuzzy Syst. 15(3), 398–409 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gupta, A., Agrawal, R.K. (2012). Relevant Feature Selection from EEG Signal for Mental Task Classification. In: Tan, PN., Chawla, S., Ho, C.K., Bailey, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2012. Lecture Notes in Computer Science(), vol 7302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30220-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30220-6_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30219-0

  • Online ISBN: 978-3-642-30220-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics