Instant Social Graph Search | SpringerLink
Skip to main content

Instant Social Graph Search

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7302))

Included in the following conference series:

Abstract

In this paper, we study a new problem of instant social graph search, which aims to find a sub graph that closely connects two and more persons in a social network. This is a natural requirement in our real daily life, such as “Who can be my referrals for applying for a job position?”. In this paper, we formally define the problem and present a series of approximate algorithms to solve this problem: Path, Influence, and Diversity. To evaluate the social graph search results, we have developed two prototype systems, which are online available and have attracted thousands of users. In terms of both user’s viewing time and the number of user clicks, we demonstrate that the three algorithms can significantly outperform (+34.56%-+131.37%) the baseline algorithm.

The work is supported by the Natural Science Foundation of China (No. 61073073) and Chinese National Key Foundation Research (No. 60933013, No. 61035004), a special fund for Fast Sharing of Science Paper in Net Era by CSTD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: WSDM 2009, pp. 5–14 (2009)

    Google Scholar 

  2. Aleman-Meza, B., Nagarajan, M., Ramakrishnan, C., Ding, L., Kolari, P., Sheth, A.P., Arpinar, I.B., Joshi, A., Finin, T.: Semantic analytics on social networks: experiences in addressing the problem of conflict of interest detection. In: WWW 2006, pp. 407–416 (2006)

    Google Scholar 

  3. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: KDD 2009, pp. 199–207 (2009)

    Google Scholar 

  4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  5. Faloutsos, C., McCurley, K.S., Tomkins, A.: Fast discovery of connection subgraphs. In: KDD 2004, pp. 118–127 (2004)

    Google Scholar 

  6. Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In: WWW 2009, pp. 381–390. ACM, New York (2009)

    Chapter  Google Scholar 

  7. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences 102(46), 16569–16572 (2005)

    Article  Google Scholar 

  8. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular graphs. In: SC Conference, p. 35 (1996)

    Google Scholar 

  9. Kautz, H., Selman, B., Shah, M.: Referral web: Combining social networks and collaborative filtering. Communications of the ACM 40(3), 63–65 (1997)

    Article  Google Scholar 

  10. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: KDD 2003, pp. 137–146 (2003)

    Google Scholar 

  11. Koren, Y., North, S.C., Volinsky, C.: Measuring and extracting proximity graphs in networks. ACM Trans. Knowl. Discov. Data 1 (December 2007)

    Google Scholar 

  12. Landauer, T.K.: Behavioural research methods in human-computer interaction. In: Helander, M., Landauer, T.K., Prabhu, P. (eds.) Handbook of Human-Computer Interaction (1997)

    Google Scholar 

  13. Milgram, S.: The small world problem. Psychology Today 2, 60–67 (1967)

    Google Scholar 

  14. Ramakrishnan, C., Milnor, W.H., Perry, M., Sheth, A.P.: Discovering informative connection subgraphs in multi-relational graphs. SIGKDD Explor. Newsl. 7, 56–63 (2005)

    Article  Google Scholar 

  15. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful cocktail party. In: KDD 2010, pp. 939–948 (2010)

    Google Scholar 

  16. Tang, J., Lou, T., Kleinberg, J.: Inferring social ties across heterogenous networks. In: WSDM 2012 (2012)

    Google Scholar 

  17. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: KDD 2009, pp. 807–816 (2009)

    Google Scholar 

  18. Tang, J., Wu, S., Gao, B., Wan, Y.: Topic-level social network search. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 769–772 (2011)

    Google Scholar 

  19. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extraction and mining of academic social networks. In: KDD 2008, pp. 990–998 (2008)

    Google Scholar 

  20. Tang, W., Zhuang, H., Tang, J.: Learning to Infer Social Ties in Large Networks. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 381–397. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Tong, H., He, J., Wen, Z., Konuru, R., Lin, C.-Y.: Diversified ranking on large graphs: an optimization viewpoint. In: KDD 2011, pp. 1028–1036 (2011)

    Google Scholar 

  22. Wang, C., Han, J., Jia, Y., Tang, J., Zhang, D., Yu, Y., Guo, J.: Mining advisor-advisee relationships from research publication networks. In: KDD 2010, pp. 203–212 (2010)

    Google Scholar 

  23. Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW 2005, pp. 22–32. ACM, New York (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, S., Tang, J., Gao, B. (2012). Instant Social Graph Search. In: Tan, PN., Chawla, S., Ho, C.K., Bailey, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2012. Lecture Notes in Computer Science(), vol 7302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30220-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30220-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30219-0

  • Online ISBN: 978-3-642-30220-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics