Abstract
Finite automata with random bits written on a separate 2-way readable tape can recognize languages not recognizable by probabilistic finite automata. This shows that repeated reading of random bits by finite automata can have big advantages over one-time reading of random bits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes. Journal of Computer and System Sciences 36(2), 254–276 (1988)
Barzdin, J.M.: On a Class of Turing Machines (Minsky Machines). Algebra i Logika 3(1) (1963) (Russian); Review in the Journal of Symbolic Logic 32(4), 523–524 (1967)
Calude, C.S., Staiger, L.: Generalisations of disjunctive sequences. Mathematical Logic Quarterly 51(2), 120–128 (2005)
Dwork, C., Stockmeyer, L.: Finite state verifiers I: the power of interaction. Journal of the Association for Computing Machinery 39(4), 800–828 (1992)
Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R. (ed.) SIAM-AMS Proceedings of the Complexity of Computation, vol. 7, pp. 27–41 (1974)
Freivalds, R.: Probabilistic machines can use less running time. In: Gilchrist, B. (ed.) Information Processing 1977, Proceedings of IFIP Congress 1977, pp. 839–842. North-Holland, Amsterdam (1977)
Freivalds, R.: Probabilistic Two-way Machines. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118, pp. 33–45. Springer, Heidelberg (1981)
Freivalds, R.: Complexity of Probabilistic Versus Deterministic Automata. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 565–613. Springer, Heidelberg (1991)
Freivalds, R.: Non-constructive methods for finite probabilistic automata. International Journal of Foundations of Computer Science 19(3), 565–580 (2008)
Freivalds, R.: Amount of nonconstructivity in finite automata. Theoretical Computer Science 411(38-39), 3436–3443 (2010)
Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge complexity of interactive proof-systems. In: Proceedings of ACM STOC 1985, pp. 291–304 (1985)
Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof systems. In: Proceedings of ACM STOC 1986, pp. 58–68 (1986)
Immerman, N.: Descriptive Complexity, pp. 113–119. Springer, New York (1999)
Jürgensen, H., Thierrin, G.: On ω-Languages whose syntactic monoid is trivial. International Journal of Parallel Programming 12(5), 359–365 (1983)
Karp, R.M., Lipton, R.: Turing machines that take advice. L’ Enseignement Mathematique 28, 191–209 (1982)
Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems in Information Transmission 1, 1–7 (1965)
Levin, L.A.: On the notion of a random sequence. Soviet Mathematics Doklady 14, 1413–1416 (1973)
Martin-Löf, P.: The definition of random sequences. Information and Control 9(6), 602–619 (1966)
Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer (1997)
Newman, I.: Private vs. common random bits in communication complexity. Information Processing Letters 39, 67–71 (1991)
Nishimura, H., Yamakami, T.: Polynomial time quantum computation with advice. Information Processing Letters 90(4), 195–204 (2004)
Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–245 (1963)
Schnorr, C.-P.: A unified approach to the definition of random sequences. Mathematical Systems Theory 5(3), 246–258 (1971)
Schnorr, C.-P.: Process complexity and effective random tests. Journal of Computer and System Sciences 7(4), 376–388 (1973)
Shannon, C.: Communication theory of secrecy systems. Bell System Technical Journal 28(4), 656–715 (1949)
Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing machines. Theoretical Computer Science 411(1), 22–43 (2010)
Yamakami, T.: The Roles of Advice to One-Tape Linear-time Turing machines and finite automata. International Journal of Foundations of Computer Science 21(6), 941–962 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Freivalds, R. (2012). Multiple Usage of Random Bits in Finite Automata. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_50
Download citation
DOI: https://doi.org/10.1007/978-3-642-29952-0_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29951-3
Online ISBN: 978-3-642-29952-0
eBook Packages: Computer ScienceComputer Science (R0)