Goal-Directed Online Learning of Predictive Models | SpringerLink
Skip to main content

Goal-Directed Online Learning of Predictive Models

  • Conference paper
Recent Advances in Reinforcement Learning (EWRL 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7188))

Included in the following conference series:

Abstract

We present an algorithmic approach for integrated learning and planning in predictive representations. The approach extends earlier work on predictive state representations to the case of online exploration, by allowing exploration of the domain to proceed in a goal-directed fashion and thus be more efficient. Our algorithm interleaves online learning of the models, with estimation of the value function. The framework is applicable to a variety of important learning problems, including scenarios such as apprenticeship learning, model customization, and decision-making in non-stationary domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aberdeen, D., Buffet, O., Thomas, O.: Policy-gradients for PSRs and POMDPs. In: AISTATS (2007)

    Google Scholar 

  2. Boots, B., Gordon, G.J.: An online spectral learning algorithm for partially observable nonlinear dynamical systems. In: Proceedings AAAI (2011)

    Google Scholar 

  3. Boots, B., Siddiqi, S., Gordon, G.: Closing the learning-planning loop with predictive state representations. In: Proceedings of Robotics: Science and Systems (2010)

    Google Scholar 

  4. Bowling, M., McCracken, P., James, M., Neufeld, J., Wilkinson, D.: Learning predictive state representations using non-blind policies. In: Proceedings ICML (2006)

    Google Scholar 

  5. Brand, M.: Fast low-rank modifications of the thin singular value decomposition. Linear Algebra and its Applications 415, 20–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dinculescu, M., Precup, D.: Approximate predictive representations of partially observable systems. In: Proceedings ICML (2010)

    Google Scholar 

  7. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning. Journal of Machine Learning (2005)

    Google Scholar 

  8. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning 63, 3–42 (2006)

    Article  MATH  Google Scholar 

  9. Gordon, G.J.: Approximate Solutions to Markov Decision Processes. Ph.D. thesis, School of Computer Science, Carnegie Mellon University (1999)

    Google Scholar 

  10. Izadi, M.T., Precup, D.: Point-Based Planning for Predictive State Representations. In: Bergler, S. (ed.) Canadian AI. LNCS (LNAI), vol. 5032, pp. 126–137. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. James, M.R., Wessling, T., Vlassis, N.: Improving approximate value iteration using memories and predictive state representations. In: AAAI (2006)

    Google Scholar 

  12. James, M.R., Singh, S., Littman, M.L.: Planning with predictive state representations. In: International Conference on Machine Learning and Applications, pp. 304–311 (2004)

    Google Scholar 

  13. Littman, M., Sutton, R., Singh, S.: Predictive representations of state. In: Advances in Neural Information Processing Systems, NIPS (2002)

    Google Scholar 

  14. McCallum, A.K.: Reinforcement Learning with Selective Perception and Hidden State. Ph.D. thesis, University of Rochester (1996)

    Google Scholar 

  15. McCracken, P., Bowling, M.: Online discovery and learning of predictive state representations. In: Neural Information Processing Systems, vol. 18 (2006)

    Google Scholar 

  16. Nguyen, P., Sunehag, P., Hutter, M.: Feature reinforcement learning in practice. Tech. rep. (2011)

    Google Scholar 

  17. Poupart, P., Vlassis, N.: Model-based bayesian reinforcement learning in partially observable domains. In: Tenth International Symposium on Artificial Intelligence and Mathematics, ISAIM (2008)

    Google Scholar 

  18. Rafols, E.J., Ring, M., Sutton, R., Tanner, B.: Using predictive representations to improve generalization in reinforcement learning. In: IJCAI (2005)

    Google Scholar 

  19. Rosencrantz, M., Gordon, G.J., Thrun, S.: Learning low dimensional predictive representations. In: Proceedings ICML (2004)

    Google Scholar 

  20. Ross, S., Pineau, J., Chaib-draa, B., Kreitmann, P.: A Bayesian approach for learning and planning in partially observable Markov decision processes. Journal of Machine Learning Research 12, 1655–1696 (2011)

    MathSciNet  Google Scholar 

  21. Singh, S., James, M., Rudary, M.: Predictive state representations: A new theory for modeling dynamical systems. In: Proceedings UAI (2004)

    Google Scholar 

  22. Soni, V., Singh, S.: Abstraction in predictive state representations. In: AAAI (2007)

    Google Scholar 

  23. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press (1998)

    Google Scholar 

  24. Talvitie, E., Singh, S.: Simple local models for complex dynamical systems. In: Advances in Neural Information Processing Systems, NIPS (2008)

    Google Scholar 

  25. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI approximation. JAIR 40, 95–142 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ong, S.C.W., Grinberg, Y., Pineau, J. (2012). Goal-Directed Online Learning of Predictive Models. In: Sanner, S., Hutter, M. (eds) Recent Advances in Reinforcement Learning. EWRL 2011. Lecture Notes in Computer Science(), vol 7188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29946-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29946-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29945-2

  • Online ISBN: 978-3-642-29946-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics