MapReduce for Parallel Reinforcement Learning | SpringerLink
Skip to main content

MapReduce for Parallel Reinforcement Learning

  • Conference paper
Recent Advances in Reinforcement Learning (EWRL 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7188))

Included in the following conference series:

  • 2452 Accesses

Abstract

We investigate the parallelization of reinforcement learning algorithms using MapReduce, a popular parallel computing framework. We present parallel versions of several dynamic programming algorithms, including policy evaluation, policy iteration, and off-policy updates. Furthermore, we design parallel reinforcement learning algorithms to deal with large scale problems using linear function approximation, including model-based projection, least squares policy iteration, temporal difference learning and recent gradient temporal difference learning algorithms. We give time and space complexity analysis of the proposed algorithms. This study demonstrates how parallelization opens new avenues for solving large scale reinforcement learning problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific, Massachusetts (1996)

    MATH  Google Scholar 

  2. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Massachusetts (1997)

    Google Scholar 

  3. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: Haloop: Efficient iterative data processing on large clusters. In: The 36th International Conference on Very Large Data Bases (VLDB 2010), Singapore (September 2010)

    Google Scholar 

  4. Chu, C.-T., Kim, S.K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A., Olukotun, K.: Map-reduce for machine learning on multicore. In: Advances in Neural Information Processing Systems 19 (NIPS 2006), pp. 281–288 (December 2006)

    Google Scholar 

  5. Dean, J., Ghemawat, S.: Mapreduce: Simplied data processing on large clusters. In: OSDI 2004, San Francisco, USA, pp. 137–150 (December 2004)

    Google Scholar 

  6. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J., Fox, G.: Twister: A runtime for iterative mapreduce. In: The First International Workshop on MapReduce and its Applications, Chicago, USA (June 2010)

    Google Scholar 

  7. Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  8. Kung, U., Tsourakakis, C.E., Faloutsos, C.: Pegasus: A peta-scale graph mining system - implementation and observations. In: ICDM 2009, Miami, pp. 229–238 (December 2009)

    Google Scholar 

  9. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. The Journal of Machine Learning Research 4, 1107–1149 (2003)

    MathSciNet  Google Scholar 

  10. Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Morgan & Claypool (2009)

    Google Scholar 

  11. Liu, C., Yang, H.-C., Fan, J., He, L.-W., Wang, Y.-M.: Distributed nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce. In: Proceedings of the 19th International World Wide Web Conference (WWW 2010), Raleigh, North Carolina, USA, April 26-30, pp. 681–690 (2010)

    Google Scholar 

  12. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Graphlab: A new parallel framework for machine learning. In: Uncertainty in Artificial Intelligence (UAI), Catalina Island, USA (July 2010)

    Google Scholar 

  13. Maei, H.R., Sutton, R.S.: GQ(λ): A general gradient algorithm for temporal-difference prediction learning with eligibility traces. In: Proceedings of the Third Conference on Artificial General Intelligence, Lugano, Switzerland (2010)

    Google Scholar 

  14. Puterman, M.L.: Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, New York (1994)

    MATH  Google Scholar 

  15. Silver, D., Sutton, R.S., Muller, M.: Reinforcement learning of local shape in the game of Go. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India, pp. 1053–1058 (January 2007)

    Google Scholar 

  16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)

    Google Scholar 

  17. Sutton, R.S., Maei, H.R., Precup, D., Bhatnagar, S., Silver, D., Szepesvari, C., Wiewiora, E.: Fast gradient-descent methods for temporal-difference learning with linear function approximation. In: Proceedings of ICML 2009, Montreal, Canada, pp. 993–1000 (June 2009)

    Google Scholar 

  18. Szepesvari, C.: Algorithms for Reinforcement Learning. Morgan Kaufmann & Claypool (2010)

    Google Scholar 

  19. Tsitsiklis, J.N., Van Roy, B.: Regression methods for pricing complex American-style options. IEEE Transactions on Neural Networks (Special Issue on Computational Finance) 12(4), 694–703 (2001)

    Google Scholar 

  20. White, T.: Hadoop: The Definitive Guide. O’Reilly (2009)

    Google Scholar 

  21. Zinkevich, M., Weimer, M., Smola, A., Li, L.: Parallelized stochastic gradient descent. In: Proceedings of Advances in Neural Information Processing Systems 24 (NIPS 2010), Vancouver, Canada, pp. 2217–2225 (December 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Y., Schuurmans, D. (2012). MapReduce for Parallel Reinforcement Learning. In: Sanner, S., Hutter, M. (eds) Recent Advances in Reinforcement Learning. EWRL 2011. Lecture Notes in Computer Science(), vol 7188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29946-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29946-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29945-2

  • Online ISBN: 978-3-642-29946-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics