Transfer Learning via Multiple Inter-task Mappings | SpringerLink
Skip to main content

Transfer Learning via Multiple Inter-task Mappings

  • Conference paper
Recent Advances in Reinforcement Learning (EWRL 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7188))

Included in the following conference series:

  • 2322 Accesses

Abstract

In this paper we investigate using multiple mappings for transfer learning in reinforcement learning tasks. We propose two different transfer learning algorithms that are able to manipulate multiple inter-task mappings for both model-learning and model-free reinforcement learning algorithms. Both algorithms incorporate mechanisms to select the appropriate mappings, helping to avoid the phenomenon of negative transfer. The proposed algorithms are evaluated in the Mountain Car and Keepaway domains. Experimental results show that the use of multiple inter-task mappings can significantly boost the performance of transfer learning methodologies, relative to using a single mapping or learning without transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jong, N.K., Stone, P.: Model-Based Exploration in Continuous State Spaces. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 258–272. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Lazaric, A.: Knowledge Transfer in Reinforcement Learning. PhD thesis, Politecnico di Milano (2008)

    Google Scholar 

  3. Ng, A., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., Liang, E.: Autonomous inverted helicopter flight via reinforcement learning. In: Experimental Robotics, vol. IX, pp. 363–372 (2006)

    Google Scholar 

  4. Singh, S.P., Sutton, R.S.: Reinforcement learning with replacing eligibility traces. Machine Learning 22(1-3), 123–158 (1996)

    Article  MATH  Google Scholar 

  5. Stone, P., Kuhlmann, G., Taylor, M.E., Liu, Y.: Keepaway Soccer: From Machine Learning Testbed to Benchmark. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 93–105. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Stone, P., Sutton, R.S.: Keepaway Soccer: A Machine Learning Testbed. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 214–223. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Sutton, R.S., Barto, A.G.: Reinforcement Learning, An Introduction. MIT Press (1998)

    Google Scholar 

  8. Talvitie, E., Singh, S.: An experts algorithm for transfer learning. In: Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 1065–1070 (2007)

    Google Scholar 

  9. Taylor, M.E., Jong, N.K., Stone, P.: Transferring Instances for Model-Based Reinforcement Learning. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 488–505. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Taylor, M.E., Kuhlmann, G., Stone, P.: Autonomous transfer for reinforcement learning. In: 7th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 283–290 (2008)

    Google Scholar 

  11. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: A survey. Journal of Machine Learning Research 10(1), 1633–1685 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Taylor, M.E., Stone, P., Liu, Y.: Transfer learning via inter-task mappings for temporal difference learning. Journal of Machine Learning Research 8, 2125–2167 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Taylor, M.E., Whiteson, S., Stone, P.: Transfer via inter-task mappings in policy search reinforcement learning. In: 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 37:1–37:8 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fachantidis, A., Partalas, I., Taylor, M.E., Vlahavas, I. (2012). Transfer Learning via Multiple Inter-task Mappings. In: Sanner, S., Hutter, M. (eds) Recent Advances in Reinforcement Learning. EWRL 2011. Lecture Notes in Computer Science(), vol 7188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29946-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29946-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29945-2

  • Online ISBN: 978-3-642-29946-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics