ℓ1-Penalized Projected Bellman Residual | SpringerLink
Skip to main content

1-Penalized Projected Bellman Residual

  • Conference paper
Recent Advances in Reinforcement Learning (EWRL 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7188))

Included in the following conference series:

Abstract

We consider the task of feature selection for value function approximation in reinforcement learning. A promising approach consists in combining the Least-Squares Temporal Difference (LSTD) algorithm with ℓ1-regularization, which has proven to be effective in the supervised learning community. This has been done recently whit the LARS-TD algorithm, which replaces the projection operator of LSTD with an ℓ1-penalized projection and solves the corresponding fixed-point problem. However, this approach is not guaranteed to be correct in the general off-policy setting. We take a different route by adding an ℓ1-penalty term to the projected Bellman residual, which requires weaker assumptions while offering a comparable performance. However, this comes at the cost of a higher computational complexity if only a part of the regularization path is computed. Nevertheless, our approach ends up to a supervised learning problem, which let envision easy extensions to other penalties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antos, A., Szepesvári, C., Munos, R.: Learning near-optimal policies with Bellman-residual minimization based fitted policy iteration and a single sample path. Machine Learning 71(1), 89–129 (2008)

    Article  Google Scholar 

  2. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific

    Google Scholar 

  3. Boyan, J.A.: Technical Update: Least-Squares Temporal Difference Learning. Machine Learning 49(2-3), 233–246 (1999)

    Google Scholar 

  4. Bradtke, S.J., Barto, A.G.: Linear Least-Squares algorithms for temporal difference learning. Machine Learning 22(1-3), 33–57 (1996)

    Article  MATH  Google Scholar 

  5. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic Decomposition by Basis Pursuit. SIAM Journal on Scientific Computing 20, 33–61 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least Angle Regression. Annals of Statistics 32(2), 407–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Farahmand, A., Ghavamzadeh, M., Szepesvári, C., Mannor, S.: Regularized policy iteration. In: 22nd Annual Conference on Neural Information Processing Systems (NIPS 21), Vancouver, Canada (2008)

    Google Scholar 

  8. Ghavamzadeh, M., Lazaric, A., Munos, R., Hoffman, M.: Finite-Sample Analysis of Lasso-TD. In: International Conference on Machine Learning (2011)

    Google Scholar 

  9. Hoffman, M.W., Lazaric, A., Ghavamzadeh, M., Munos, R.: Regularized least squares temporal difference learning with nested ℓ2 and ℓ1 penalization. In: European Workshop on Reinforcement Learning (2011)

    Google Scholar 

  10. Johns, J., Mahadevan, S.: Constructing basis functions from directed graphs for value function approximation. In: Proceedings of the 24th International Conference on Machine Learning, ICML 2007, pp. 385–392. ACM, New York (2007)

    Chapter  Google Scholar 

  11. Johns, J., Painter-Wakefield, C., Parr, R.: Linear Complementarity for Regularized Policy Evaluation and Improvement. In: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) NIPS 23, pp. 1009–1017 (2010)

    Google Scholar 

  12. Kolter, J.Z., Ng, A.Y.: Regularization and Feature Selection in Least-Squares Temporal Difference Learning. In: Proceedings of the 26th International Conference on Machine Learning (ICML 2009), Montreal, Canada (2009)

    Google Scholar 

  13. Loth, M., Davy, M., Preux, P.: Sparse Temporal Difference Learning using LASSO. In: IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning, Hawaï, USA (2007)

    Google Scholar 

  14. Munos, R.: Error bounds for approximate policy iteration. In: International Conference on Machine Learning (2003)

    Google Scholar 

  15. Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., Littman, M.L.: An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 752–759. ACM, New York (2008)

    Chapter  Google Scholar 

  16. Petrik, M., Taylor, G., Parr, R., Zilberstein, S.: Feature Selection Using Regularization in Approximate Linear Programs for Markov Decision Processes. In: Proceedings of ICML (2010)

    Google Scholar 

  17. Rosset, S., Zhu, J.: Piecewise linear regularized solution paths. The Annals of Statistics 35(3), 1012–1030 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Scherrer, B.: Should one compute the Temporal Difference fix point or minimize the Bellman Residual? The unified oblique projection view. In: 27th International Conference on Machine Learning - ICML 2010, Haïfa, Israël (2010)

    Google Scholar 

  19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning). The MIT Press (1998)

    Google Scholar 

  20. Sutton, R.S., Maei, H.R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C., Wiewiora, E.: Fast gradient-descent methods for temporal-difference learning with linear function approximation. In: Proceedings of ICML, pp. 993–1000. ACM, New York (2009)

    Google Scholar 

  21. Szepesvári, C.: Algorithms for Reinforcement Learning. Morgan and Kaufmann (2010)

    Google Scholar 

  22. Taylor, G., Parr, R.: Kernelized value function approximation for reinforcement learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 1017–1024. ACM, New York (2009)

    Google Scholar 

  23. Thiery, C., Scherrer, B.: Building Controllers for Tetris. International Computer Games Association Journal 32, 3–11 (2009)

    Google Scholar 

  24. Tibshirani, R.: Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Zou, H.: The adaptive lasso and its oracle properties. Journal of the American Statistical Association 101(476), 1418–1429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zou, H., Zhang, H.H.: On the adaptive elastic-net with a diverging number of parameters. The Annals of Statistics 37(4), 1733–1751 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geist, M., Scherrer, B. (2012). ℓ1-Penalized Projected Bellman Residual. In: Sanner, S., Hutter, M. (eds) Recent Advances in Reinforcement Learning. EWRL 2011. Lecture Notes in Computer Science(), vol 7188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29946-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29946-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29945-2

  • Online ISBN: 978-3-642-29946-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics