Abstract
Formal Concept Analysis (FCA) begins from a context, given as a binary relation between some objects and some attributes, and derives a lattice of concepts, where each concept is given as a set of objects and a set of attributes, such that the first set consists of all objects that satisfy all attributes in the second, and vice versa. Many applications, though, provide contexts with quantitative information, telling not just whether an object satisfies an attribute, but also quantifying this satisfaction. Contexts in this form arise as rating matrices in recommender systems, as occurrence matrices in text analysis, as pixel intensity matrices in digital image processing, etc. Such applications have attracted a lot of attention, and several numeric extensions of FCA have been proposed. We propose the framework of proximity sets (proxets), which subsume partially ordered sets (posets) as well as metric spaces. One feature of this approach is that it extracts from quantified contexts quantified concepts, and thus allows full use of the available information. Another feature is that the categorical approach allows analyzing any universal properties that the classical FCA and the new versions may have, and thus provides structural guidance for aligning and combining the approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Azar, Y., Fiat, A., Karlin, A., McSherry, F., Saia, J.: Spectral analysis of data. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp. 619–626. ACM, New York (2001)
Banaschewski, B., Bruns, G.: Categorical characterization of the MacNeille completion. Archiv der Mathematik 18(4), 369–377 (1967)
Bělohlávek, R.: Fuzzy relational systems: foundations and principles, vol. 20. Plenum Publishers (2002)
Bělohlávek, R.: Concept lattices and order in fuzzy logic. Annals Pure Appl. Logic 128(1-3), 277–298 (2004)
Belohlavek, R.: What is a Fuzzy Concept Lattice? II. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 19–26. Springer, Heidelberg (2011)
Bonsangue, M.M., van Breugel, F., Rutten, J.J.M.M.: Generalized metric spaces: completion, topology, and power domains via the yoneda embedding. Theor. Comput. Sci. 193(1-2), 1–51 (1998)
Burusco, A., Fuentes-González, R.: Construction of the L-fuzzy concept lattice. Fuzzy Sets and systems 97(1), 109–114 (1998)
Burusco, A., Fuentes-González, R.: The study of the L-fuzzy concept lattice. Mathware & Soft Computing 1(3), 209–218 (2008)
Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. John Wiley & Sons (2004)
Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by Latent Semantic Analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990)
du Boucher-Ryan, P., Bridge, D.G.: Collaborative recommending using Formal Concept Analysis. Knowl.-Based Syst. 19(5), 309–315 (2006)
Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)
Ganter, B., Wille, R.: Conceptual scaling. Institute for Mathematics and Its Applications 17, 139 (1989)
Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI), vol. 3626. Springer, Heidelberg (2005)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)
Gehrke, M.: Generalized kripke frames. Studia Logica 84(2), 241–275 (2006)
Kaytoue, M., Kuznetsov, S.O., Macko, J., Meira Jr., W., Napoli, A.: Mining biclusters of similar values with triadic concept analysis. In: Proceedings of CLA 2011. CLA (2011)
Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Pattern mining in numerical data: Extracting closed patterns and their generators. Research Report RR-7416, INRIA (October 2010)
Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining with formal concept analysis. In: Proceedings of IJCAI 2011, pp. 1342–1347. AAAI (2011)
Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis. Inf. Sci. 10(181), 1989–2001 (2011)
Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Mathematical Society Lecture Note, vol. 64, pp. 1–136. Cambridge University Press (1982); Reprinted in Theory and Applications of Categories, vol. 10, pp.1–136 (2005)
Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer 42(8), 30–37 (2009)
Krajči, S.: A generalized concept lattice. Logic Journal of IGPL 13(5), 543–550 (2005)
Künzi, H.P., Schellekens, M.P.: On the yoneda completion of a quasi-metric space. Theor. Comput. Sci. 278(1-2), 159–194 (2002)
William Lawvere, F.: Metric spaces, generalised logic, and closed categories. Rendiconti del Seminario Matematico e Fisico di Milano 43, 135–166 (1973)
Lehmann, F., Wille, R.: A Triadic Approach to Formal Concept Analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995)
Leinster, T., Cobbold, C.: Measuring diversity: the importance of species similarity. Ecology (to appear, 2012)
MacNeille, H.M.: Extensions of partially ordered sets. Proc. Nat. Acad. Sci. 22(1), 45–50 (1936)
Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer (1971); 2nd edn. (1997)
Pavlovic, D.: Network as a Computer: Ranking Paths to Find Flows. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 384–397. Springer, Heidelberg (2008)
Pavlovic, D.: On quantum statistics in data analysis. In: Bruza, P. (ed.) Quantum Interaction 2008. AAAI (2008), arxiv.org:0802.1296
Pavlovic, D.: Quantifying and Qualifying Trust: Spectral Decomposition of Trust Networks. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 1–17. Springer, Heidelberg (2011)
Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal Concept Analysis in Knowledge Discovery: A Survey. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 139–153. Springer, Heidelberg (2010)
Wagner, K.R.: Liminf convergence in omega-categories. Theor. Comput. Sci. 184(1-2), 61–104 (1997)
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Dan Reidel, Dordrecht (1982)
Wilson, W.A.: On quasi-metric spaces. Amer. J. Math. 52(3), 675–684 (1931)
Kim, Y.W.: Pseudo quasi metric spaces. Proc. Japan Acad. 10, 1009–1012 (1968)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pavlovic, D. (2012). Quantitative Concept Analysis. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds) Formal Concept Analysis. ICFCA 2012. Lecture Notes in Computer Science(), vol 7278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29892-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-29892-9_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29891-2
Online ISBN: 978-3-642-29892-9
eBook Packages: Computer ScienceComputer Science (R0)