Quantitative Concept Analysis | SpringerLink
Skip to main content

Quantitative Concept Analysis

  • Conference paper
Formal Concept Analysis (ICFCA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7278))

Included in the following conference series:

  • 1214 Accesses

Abstract

Formal Concept Analysis (FCA) begins from a context, given as a binary relation between some objects and some attributes, and derives a lattice of concepts, where each concept is given as a set of objects and a set of attributes, such that the first set consists of all objects that satisfy all attributes in the second, and vice versa. Many applications, though, provide contexts with quantitative information, telling not just whether an object satisfies an attribute, but also quantifying this satisfaction. Contexts in this form arise as rating matrices in recommender systems, as occurrence matrices in text analysis, as pixel intensity matrices in digital image processing, etc. Such applications have attracted a lot of attention, and several numeric extensions of FCA have been proposed. We propose the framework of proximity sets (proxets), which subsume partially ordered sets (posets) as well as metric spaces. One feature of this approach is that it extracts from quantified contexts quantified concepts, and thus allows full use of the available information. Another feature is that the categorical approach allows analyzing any universal properties that the classical FCA and the new versions may have, and thus provides structural guidance for aligning and combining the approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azar, Y., Fiat, A., Karlin, A., McSherry, F., Saia, J.: Spectral analysis of data. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp. 619–626. ACM, New York (2001)

    Chapter  Google Scholar 

  2. Banaschewski, B., Bruns, G.: Categorical characterization of the MacNeille completion. Archiv der Mathematik 18(4), 369–377 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bělohlávek, R.: Fuzzy relational systems: foundations and principles, vol. 20. Plenum Publishers (2002)

    Google Scholar 

  4. Bělohlávek, R.: Concept lattices and order in fuzzy logic. Annals Pure Appl. Logic 128(1-3), 277–298 (2004)

    Article  MATH  Google Scholar 

  5. Belohlavek, R.: What is a Fuzzy Concept Lattice? II. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 19–26. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Bonsangue, M.M., van Breugel, F., Rutten, J.J.M.M.: Generalized metric spaces: completion, topology, and power domains via the yoneda embedding. Theor. Comput. Sci. 193(1-2), 1–51 (1998)

    Article  MATH  Google Scholar 

  7. Burusco, A., Fuentes-González, R.: Construction of the L-fuzzy concept lattice. Fuzzy Sets and systems 97(1), 109–114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burusco, A., Fuentes-González, R.: The study of the L-fuzzy concept lattice. Mathware & Soft Computing 1(3), 209–218 (2008)

    Google Scholar 

  9. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. John Wiley & Sons (2004)

    Google Scholar 

  10. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by Latent Semantic Analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990)

    Article  Google Scholar 

  11. du Boucher-Ryan, P., Bridge, D.G.: Collaborative recommending using Formal Concept Analysis. Knowl.-Based Syst. 19(5), 309–315 (2006)

    Article  Google Scholar 

  12. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Ganter, B., Wille, R.: Conceptual scaling. Institute for Mathematics and Its Applications 17, 139 (1989)

    Article  MathSciNet  Google Scholar 

  14. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI), vol. 3626. Springer, Heidelberg (2005)

    Google Scholar 

  15. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  16. Gehrke, M.: Generalized kripke frames. Studia Logica 84(2), 241–275 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaytoue, M., Kuznetsov, S.O., Macko, J., Meira Jr., W., Napoli, A.: Mining biclusters of similar values with triadic concept analysis. In: Proceedings of CLA 2011. CLA (2011)

    Google Scholar 

  18. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Pattern mining in numerical data: Extracting closed patterns and their generators. Research Report RR-7416, INRIA (October 2010)

    Google Scholar 

  19. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining with formal concept analysis. In: Proceedings of IJCAI 2011, pp. 1342–1347. AAAI (2011)

    Google Scholar 

  20. Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with pattern structures in formal concept analysis. Inf. Sci. 10(181), 1989–2001 (2011)

    Article  MathSciNet  Google Scholar 

  21. Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Mathematical Society Lecture Note, vol. 64, pp. 1–136. Cambridge University Press (1982); Reprinted in Theory and Applications of Categories, vol. 10, pp.1–136 (2005)

    Google Scholar 

  22. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  23. Krajči, S.: A generalized concept lattice. Logic Journal of IGPL 13(5), 543–550 (2005)

    Article  MATH  Google Scholar 

  24. Künzi, H.P., Schellekens, M.P.: On the yoneda completion of a quasi-metric space. Theor. Comput. Sci. 278(1-2), 159–194 (2002)

    Article  MATH  Google Scholar 

  25. William Lawvere, F.: Metric spaces, generalised logic, and closed categories. Rendiconti del Seminario Matematico e Fisico di Milano 43, 135–166 (1973)

    Article  MathSciNet  Google Scholar 

  26. Lehmann, F., Wille, R.: A Triadic Approach to Formal Concept Analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  27. Leinster, T., Cobbold, C.: Measuring diversity: the importance of species similarity. Ecology (to appear, 2012)

    Google Scholar 

  28. MacNeille, H.M.: Extensions of partially ordered sets. Proc. Nat. Acad. Sci. 22(1), 45–50 (1936)

    Article  MATH  Google Scholar 

  29. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer (1971); 2nd edn. (1997)

    Google Scholar 

  30. Pavlovic, D.: Network as a Computer: Ranking Paths to Find Flows. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 384–397. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  31. Pavlovic, D.: On quantum statistics in data analysis. In: Bruza, P. (ed.) Quantum Interaction 2008. AAAI (2008), arxiv.org:0802.1296

    Google Scholar 

  32. Pavlovic, D.: Quantifying and Qualifying Trust: Spectral Decomposition of Trust Networks. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 1–17. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  33. Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal Concept Analysis in Knowledge Discovery: A Survey. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 139–153. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  34. Wagner, K.R.: Liminf convergence in omega-categories. Theor. Comput. Sci. 184(1-2), 61–104 (1997)

    Article  MATH  Google Scholar 

  35. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Dan Reidel, Dordrecht (1982)

    Google Scholar 

  36. Wilson, W.A.: On quasi-metric spaces. Amer. J. Math. 52(3), 675–684 (1931)

    Article  Google Scholar 

  37. Kim, Y.W.: Pseudo quasi metric spaces. Proc. Japan Acad. 10, 1009–1012 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pavlovic, D. (2012). Quantitative Concept Analysis. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds) Formal Concept Analysis. ICFCA 2012. Lecture Notes in Computer Science(), vol 7278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29892-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29892-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29891-2

  • Online ISBN: 978-3-642-29892-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics