Good Classification Tests as Formal Concepts | SpringerLink
Skip to main content

Good Classification Tests as Formal Concepts

  • Conference paper
Formal Concept Analysis (ICFCA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7278))

Included in the following conference series:

Abstract

The interconnection between the Diagnostic (Classification) Test Approach to Data Analysis and the Formal Concept Analysis (FCA) is considered. The definition of a good classification test is given via Galois’s correspondences. Next we discuss the relations between good tests and formal concepts. A good classification test is understood as a good approximation of a given classification on a given set of examples. Classification tests serve as a basis for inferring implicative, functional dependencies and association rules from datasets. This approach gives the possibility to directly control the data analysis process by giving object classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellandi, A., Furletti, B., Grossi, V., Romei, A.: Ontology-driven association rule extraction: a case study. In: Proceedings of the Workshop “Context & Ontologies: Representation and Reasoning”, pp. 1–10 (2007)

    Google Scholar 

  2. Garriga, G.C., Kralj, P., Lavrac, N.: Closed sets for labeled data. Journal of Machine Learning Research 9, 559–580 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Won, D., McLeod, D.: Ontology-driven rule generalization and categorization for market data. In: Proceedings of the 23rd ICDE Workshop on Data Mining and Business Intelligence (DMBI 2007), pp. 917–923. The IEEE Computer Society (2007)

    Google Scholar 

  4. Marinica, C., Guillet, F.: Filtering discovered association rules using ontologies. IEEE Transactions on Knowledge and Data Engineering Journal, Special Issue “Domain-Driven Data Mining” 22(6), 784–797 (2010)

    Google Scholar 

  5. Olaru, A., Marinika, C., Guillet, F.: Local mining of association rules with rule schemas. In: Proceeding of the IEEE Symposium on Computational Intelligence and Data Mining. IEEE Symposium Series on Computational Intelligence, pp. 118–124. The IEEE Computer Society (2009)

    Google Scholar 

  6. Shen, Y.-D., Zhang, Z., Yang, Q.: Objective-oriented utility-based association mining. In: Proceedings of the IEEE International Conference on Data Mining, pp. 426–433. The IEEE Computer Society (2002)

    Google Scholar 

  7. Naidenova, X.A., Polegaeva, J.G.: SISIF – the System of knowledge acquisition from experimental facts. In: Alty, J.L., Mikulich, L.I. (eds.) Industrial Applications of Artificial Intelligence, pp. 87–92. Elsevier Science Publishers B.V., Amsterdam (1991)

    Google Scholar 

  8. Naidenova, X.A.: Reducing machine learning tasks to the approximation of a given classification on a given set of examples. In: Proceedings of the 5th National Conference at Artificial Intelligence, Kazan, Tatarstan, vol. 1, pp. 275–279 (1996) (in Russian)

    Google Scholar 

  9. Naidenova, X.A.: DIAGARA: an incremental algorithm for inferring implicative rules from examples. Intern. Journal “Information Theories & Applications” 12(2), 171–186 (2005)

    Google Scholar 

  10. Naidenova, X.A., Shagalov, V.L.: Diagnostic Test Machine. In: Auer, M. (ed.) Proceedings of the ICL 2009 – Interactive Computer Aided Learning Conference, Austria, CD, pp. 505–507. Kassel University Press (2009)

    Google Scholar 

  11. Maier, D.: The theory of relational databases. Computer Science Press (1983)

    Google Scholar 

  12. Kotsiantis, S., Kanellopoulos, D.: Association rules mining: a recent overview. GESTS International Transactions on Computer Science and Engineering 32(1), 71–82 (2006)

    Google Scholar 

  13. Naidenova, X.A., Polegaeva, J.G.: An algorithm of finding the best diagnostic tests. In: Mintz, G.E., Lorents, P.P. (eds.) The Application of Mathematical Logic Methods, pp. 63–67. Institute of Cybernetics, National Acad. of Sciences of Estonia, Tallinn, Estonia (1986)

    Google Scholar 

  14. Ore, O.: Theory of equivalence relations. Duke Mathematical Journal 9(4), 573–627 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  15. Naidenova, X.A.: Automation of experimental data classification based on the algebraic lattice theory. Unpublished doctoral dissertation, Saint-Petersburg, Electro-Technical University (1979) (in Russian)

    Google Scholar 

  16. Kuznetsov, S.O.: Machine learning on the basis of Formal Concept Analysis. Automation and Remote Control 62(10), 1543–1564 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuznetsov, S.O.: Galois Connections in Data Analysis: Contributions from the Soviet Era and Modern Russian Research. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 196–225. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Finn, V.K.: On computer-oriented formalization of plausible reasoning in F. Bacon - J. S. Mill Style. Semiotika Inf. 20, 35–101 (1983) (in Russian)

    MathSciNet  MATH  Google Scholar 

  19. Finn, V.K.: Plausible reasoning in intelligent systems of JSM-type. Itogi Nauki Tekh., Ser. Inf. 15, 54–101 (1991)

    Google Scholar 

  20. Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  21. Ore, O.: Galois Connexions. Transactions of the American Mathematical Society 55(1), 493–513 (1944)

    MathSciNet  MATH  Google Scholar 

  22. Birkhoff, G.: Lattice theory. Foreign Literature, Moscow (1954) (in Russian)

    Google Scholar 

  23. Naidenova, X.A.: Machine learning as a diagnostic task. In: Arefiev, I. (ed.) Knowledge-Dialogue-Solution, Materials of the Short-Term Scientific Seminar, pp. 26–36. State North-West Technical University, Saint-Petersburg (1992)

    Google Scholar 

  24. Naidenova, X.A.: Machine learning methods for commonsense reasoning processes. Interactive models. Inference Science Reference, Hershey (2009)

    Book  Google Scholar 

  25. Naidenova, X.A., Plaksin, M.V., Shagalov, V.L.: Inductive inferring all good classification tests. In: Valkman, J. (ed.) “Knowledge-Dialog-Solution”, Proceedings of International Conference in Two Volumes, vol. 1, pp. 79–84. Kiev Institute of Applied Informatics, Yalta (1995)

    Google Scholar 

  26. Naidenova, X.A.: The data-knowledge transformation. In: Soloviev, V. (ed.) Text Processing and Cognitive Technologies, Pushchino, Russia, vol. (3), pp. 130–151 (1999)

    Google Scholar 

  27. Juravlev, J.N.: About algebraic approach to solving the pattern recognition and classification tasks. In: Jablonskij, S.V. (ed.) The Problem of Cybernetics, vol. 33, pp. 5–68. Nauka, Moscow (1978)

    Google Scholar 

  28. Cosmadakis, S., Kanellakis, P.S., Spiratos, N.: Partition semantics for relations. Computer and System Sciences 33(2), 203–233 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Naidenova, X.A.: Relational model for analyzing experimental data. The Transaction of Acad. Sci. of USSR, Series Technical Cybernetics 4, 103–119 (1982) (in Russian)

    Google Scholar 

  30. Huhtala, Y., Karkkainen, J., Porkka, P., Toivonen, Y.: TANE: An Efficient algorithm for discovering functional and approximate dependencies. The Computer Journal 42(2), 100–111 (1999)

    Article  MATH  Google Scholar 

  31. Megretskaya, I.A.: Construction of natural classification tests for knowledge base generation. In: Pecherskij, Y. (ed.) The Problem of Expert System Application in the National Economy: Reports of the Republican Workshop, pp. 89–93. Mathematical Institute with Computer Centre of Moldova Acad. of Sciences, Kishinev, Moldova (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naidenova, X.A. (2012). Good Classification Tests as Formal Concepts. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds) Formal Concept Analysis. ICFCA 2012. Lecture Notes in Computer Science(), vol 7278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29892-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29892-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29891-2

  • Online ISBN: 978-3-642-29892-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics