Abstract
Instance-specific algorithm configuration generalizes both instance-oblivious algorithm tuning as well as algorithm portfolio generation. ISAC is a recently proposed non-model-based approach for tuning solver parameters dependent on the specific instance that needs to be solved. While ISAC has been compared with instance-oblivious algorithm tuning systems before, to date a comparison with portfolio generators and other instance-specific algorithm configurators is crucially missing. In this paper, among others, we provide a comparison with SATzilla, as well as three other algorithm configurators: Hydra, DCM and ArgoSmart. Our experimental comparison shows that non-model-based ISAC significantly outperforms prior state-of-the-art algorithm selectors and configurators. The following study was the foundation for the best sequential portfolio at the 2011 SAT Competition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adenso-Diaz, B., Laguna, M.: Fine-tuning of Algorithms using Fractional Experimental Design and Local Search. Operations Research 54(1), 99–114 (2006)
Ansótegui, C., Sellmann, M., Tierney, K.: A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009)
ArgoSAT, http://argo.matf.bg.ac.rs/software/
Biere, A.: Picosat version 535. Solver description. SAT Competition (2007)
Bregman, D.R., Mitchell, D.G.: The SAT Solver MXC, version 0.75. Solver description. SAT Race Competition (2008)
Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)
Dequen, G., Dubois, O.: Dubois. kcnfs. Solver description. SAT Competition (2007)
Gomes, C.P., Selman, B.: Algorithm Portfolios. Artificial Intelligence 126(1-2), 43–62 (2001)
Hamerly, G., Elkan, C.: Learning the K in K-Means. In: NIPS (2003)
Heule, M., Dufour, M., van Zwieten, J.E., van Maaren, H.: March_eq: Implementing Additional Reasoning into an Efficient Look-Ahead SAT Solver. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 345–359. Springer, Heidelberg (2005)
Hoos, H.H.: Adaptive Novelty+: Novelty+ with adaptive noise. In: AAAI (2002)
Hutter, F., Tompkins, D., Hoos, H.H.: RSAPS: Reactive Scaling And Probabilistic Smoothing. In: CP (2002)
Hutter, F., Hamadi, Y.: Parameter Adjustment Based on Performance Prediction: Towards an Instance-Aware Problem Solver. Technical Report, MSR-TR-2005-125, Microsoft Research Cambridge (2005)
Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stuetzle, T.: ParamILS: An Automatic Algorithm Configuration Framework. JAIR 36, 267–306 (2009)
Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC – Instance-Specific Algorithm Configuration. In: ECAI, pp. 751–756 (2010)
KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Automatically Building Local Search SAT Solvers From Components. In: IJCAI (2009)
Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A Portfolio Approach to Algorithm Selection. In: IJCAI, pp. 1542–1543 (2003)
Li, C.M., Huang, W.Q.: G2WSAT: Gradient-based Greedy WalkSAT. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172. Springer, Heidelberg (2005)
Nikolić, M., Marić, F., Janičić, P.: Instance-Based Selection of Policies for SAT Solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer, Heidelberg (2009)
O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using Case-based Reasoning in an Algorithm Portfolio for Constraint Solving. In: Irish Conference on Artificial Intelligence and Cognitive Science (2008)
Pham, D.N., Anbulagan: ranov. Solver description. SAT Competition (2007)
Pham, D.N., Gretton, C.: gnovelty+. Solver description. SAT Competition (2007)
Prestwich, S.: VW: Variable Weighting Scheme. In: SAT (2005)
SAT Competition, http://www.satcomptition.org
Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 6:1–6:25 (2009)
Silverthorn, B., Miikkulainen, R.: Latent Class Models for Algorithm Portfolio Methods. In: AAAI (2010)
Thornton, J., Pham, D.N., Bain, S., Ferreira, V.: Additive versus multiplicative clause weighting for SAT. In: PRICAI, pp. 405–416 (2008)
Tompkins, D.A.D., Hutter, F., Hoos, H.H.: saps. Solver description. SAT Competition (2007)
Wei, W., Li, C.M., Zhang, H.: Combining adaptive noise and promising decreasing variables in local search for SAT. Solver description. SAT Competition (2007)
Wei, W., Li, C.M., Zhang, H.: Deterministic and random selection of variables in local search for SAT. Solver description. SAT Competition (2007)
Wei, W., Li, C.M., Zhang, H.: adaptg2wsatp. Solver description. SAT Competition (2007)
Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection. In: AAAI (2010)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla2009: an Automatic Algorithm Portfolio for SAT. Solver description. SAT Competition (2009)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based Algorithm Selection for SAT. JAIR 32(1), 565–606 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Malitsky, Y., Sellmann, M. (2012). Instance-Specific Algorithm Configuration as a Method for Non-Model-Based Portfolio Generation. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds) Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems. CPAIOR 2012. Lecture Notes in Computer Science, vol 7298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29828-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-29828-8_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29827-1
Online ISBN: 978-3-642-29828-8
eBook Packages: Computer ScienceComputer Science (R0)