Continuous Ant Colony Optimization for Identification of Time Delays in the Linear Plant | SpringerLink
Skip to main content

Continuous Ant Colony Optimization for Identification of Time Delays in the Linear Plant

  • Conference paper
Swarm and Evolutionary Computation (EC 2012, SIDE 2012)

Abstract

Interpolated Ant Colony Optimization (IACO) for a continuous domain was proposed in the paper. The IACO uses the same mechanisms as the classical ACO applied to discrete optimization. The continuous search space is sampled by individuals on the basis of the linear interpolated trace of the pheromone. It allows to obtain a simple and efficient optimization algorithm. The proposed algorithm is then used to identify delays in linear dynamic systems. The examination results show that it is an effective tool for global optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bjorklund, S., Ljung, L.: A Review of Time-Delay Estimation Techniques. In: IEEE Conference on Decision and Control 2003, Maui, USA, vol. 3, pp. 2502–2507 (2003)

    Google Scholar 

  2. Boukas, E.K.: Stochastic output feedback of uncertain time-delay system with saturing actuators. J. of Optimization Theory and Applications 118(2), 255–273 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, X., Wang, M.: Global optimization methods for time delay estimation. In: Proceedings of the World Congress on Intelligent Control and Automation (WCICA), vol. 1, pp. 212–215 (2004)

    Google Scholar 

  4. Chen, B.-S., Hung, J.-C.: A global estimation for multichannel time-delay and signal parameters via genetic algorithm. Signal Processing 81(5), 1061–1067 (2001)

    Article  MATH  Google Scholar 

  5. Harada, K., Kobayashi, Y., Okita, T.: Identification of Linear Systems With Time Delay and Unknown Order Electrical. Engineering in Japan (English translation of Denki Gakkai Ronbunshi) 145(3), 61–68 (2003)

    Google Scholar 

  6. Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a colony of cooperating agents. IEEE Trans. on SMC-Part B 26(1), 29–41 (1996)

    Google Scholar 

  7. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  8. Grassé, P.P.: La reconstruction du nid et les coordinations inter-individuelles chez bellicositermes natalensis et cubitermes sp. La thorie de la stigmergie: Essai dinterprtation des termites constructeurs. Insectes Sociaux 6, 41–81 (1959)

    Google Scholar 

  9. Dorigo, M.: Optimization, Learning and Natural Algorithms (in Italian). PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy (1992)

    Google Scholar 

  10. Bullnheimer, B., Hartl, R.F., Strauss, C.: Applying the Ant System to the Vehicle Routing Problem. In: Voss, S., et al. (eds.) Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization. Kluwer (1999)

    Google Scholar 

  11. Costa, D., Hertz, A.: Ants can color graphs. J. Oper. Res. Soc. 48, 295–305 (1997)

    MATH  Google Scholar 

  12. Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-constrained project scheduling. IEEE Trans. Evol. Comput. 6(4), 333–346 (2002)

    Article  Google Scholar 

  13. Reimann, M., Doerner, K., Hartl, R.F.: D-ants: Savings based ants divide and conquer the vehicle routing problems. Comput. Oper. Res. 31(4), 563–591 (2004)

    Article  MATH  Google Scholar 

  14. Bilchev, B., Parmee, I.C.: The Ant Colony Metaphor for Searching Continuous Design Spaces. In: Fogarty, T.C. (ed.) AISB-WS 1995. LNCS, vol. 993, pp. 25–39. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  15. Monmarché, N., Venturini, G., Slimane, M.: On how pachycondyla apicalis ants suggest a new search algorithm. Future Generation Comput. Syst. 16, 937–946 (2000)

    Article  Google Scholar 

  16. Dréo, J., Siarry, P.: A New Ant Colony Algorithm Using the Heterarchical Concept Aimed at Optimization of Multiminima Continuous Functions. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 216–221. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. European J. of Operat.Research 185, 1155–1173 (2006)

    Article  MathSciNet  Google Scholar 

  18. Koroec, P.: Stigmergy as an approach to metaheuristic optimization, Ph.D.Thesis, Joef Stefan International Postgraduate School, Ljubljana, Slovenia

    Google Scholar 

  19. Olinsky, A.D., Quinn, J.T., Mangiameli, P.M., Chen, S.K.: A genetic algorithm approach to nonlinear least squares estimation. Int. J. Math. Educ. SCI. Tehnol. 35(2), 207–217 (2004)

    Article  MathSciNet  Google Scholar 

  20. Bharth, B., Borkar, V.S.: Stochastic approximation algorithms: overview and resent trends. Sadhana India 24(Parts 4 & 5), 425–452 (1999)

    Article  Google Scholar 

  21. Iemura, H., Yang, Z., Kanae, S., Wada, K.: Identification of continous-time systems with unknow time delays by global nonlinear least-squares method. In: IFAC Workshop on Adaptation and Lerning in Control and Signal Processing, Yokohama, Japan (2004)

    Google Scholar 

  22. Papliński, J.P.: Hybrid genetic and Nelder-Mead algorithms for identification of time delay. In: 14th IEEE IFAC International Conference Methods and Models in Automation and Robotics, Midzyzdroje, Poland (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Papliński, J. (2012). Continuous Ant Colony Optimization for Identification of Time Delays in the Linear Plant. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Swarm and Evolutionary Computation. EC SIDE 2012 2012. Lecture Notes in Computer Science, vol 7269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29353-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29353-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29352-8

  • Online ISBN: 978-3-642-29353-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics