Abstract
Hierarchical Estimator is a meta-algorithm presented in [1] concerned with learning a nonlinear relation between two vector variables from training data, which is one of the core tasks of machine learning, primarily for the purpose of prediction. It arranges many simple function approximators into a tree-like structure in order to achieve a solution with a low error.
This paper presents a new version of specifics for that meta-algorithm – a so called training set division and a competence function creation method. The included experimental results show improvement over the methods described in [1]. A short recollection of Hierarchical Estimator is also included.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brodowski, S., Podolak, I.T.: Hierarchical estimator. Expert Systems with Applications 38(10), 12237–12248 (2011)
Brodowski, S.: On mean squared error of hierarchical estimator. Schedae Informaticae 20 (2011) (accepted)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009)
Haykin, S.: Neural networks, a comprehensive foundation., 3rd edn. Prentice Hall (2009)
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach (2002)
Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press (2001)
Riedmiller, M., Braun, H.: Rprop - a fast adaptive learning algorithm. In: Proceedings of the International Symposium on Computer and Information Science VII (1992)
Bezdek, J.C., Keller, J.M., Krishnapuram, R., Pal, N.R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Springer (1999)
Quinlan, J.R.: Learning with continuous classes. In: Proceedings of the 5th Australian Conference on Artificial Intelligence, AI 1992, pp. 343–348. World Scientific (1992)
Freund, Y., Schapire, R.: A decision theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)
Bartlett, P.L., Traskin, M.: Adaboost is consistent. Journal of Machine Learning Research 8, 2347–2368 (2007)
Schapire, R.E.: The strength of weak learnability. Machine Learning 5(2), 197–227 (1990)
Tresp, V.: Committee machines. In: Hu, Y.H., Hwang, J.N. (eds.) Handbook for Neural Network Signal Processing. CRC Press (2001)
Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the em algorithm. Neural Computation, 181–214 (1994)
Saito, K., Nakano, R.: A constructive learning algorithm for an hme. In: IEEE International Conference on Neural Networks, vol. 3, pp. 1268–1273 (1996)
Podolak, I.T.: Hierarchical classifier with overlapping class groups. Expert Systems with Applications 34(1), 673–682 (2008)
Pal, N., Bezdek, J.: On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems 3(3), 370–379 (1995)
Brodowski, S.: A Validity Criterion for Fuzzy Clustering. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS (LNAI), vol. 6922, pp. 113–122. Springer, Heidelberg (2011)
Wann, C.-D., Thomopoulos, S.C.A.: A comparative study of self-organizing clustering algorithms dignet and art2. Neural Networks 10(4), 737–753 (1997)
Brodowski, S.: Adaptujący się hierarchiczny aproksymator, MSc thesis (2007) (in polish)
Asuncion, A., Newman, D.: UCI machine learning repository (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brodowski, S., Bielecki, A. (2012). New Specifics for a Hierarchial Estimator Meta-algorithm. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29350-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-29350-4_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29349-8
Online ISBN: 978-3-642-29350-4
eBook Packages: Computer ScienceComputer Science (R0)