Properties and Structure of Fast Text Search Engine in Context of Semantic Image Analysis | SpringerLink
Skip to main content

Properties and Structure of Fast Text Search Engine in Context of Semantic Image Analysis

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7267))

Included in the following conference series:

  • 2246 Accesses

Abstract

In the world of computer imaging, we still do not have a good and fast enough method for image searching. This is because science is still not able to imitate fully functions of the human brain. When humans think about images, they do not think about mathematical formulas, matrices, histograms etc. Those mathematical and algorithmic methods are very good for e.g. computer face detection or number plate recognition, but we cannot directly use them for analyzing a whole image and for searching in a set of thousands or even millions of images. On the other hand, computers are able to scan millions of documents, searching for some phrase or even a single word. Fast text search is fully supported by a majority of significant database systems such as Oracle, PostgreSQL or MS SQL Server. The paper presents fast text search engine from another point of view, that is, its application in content based image retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ali, M., Clausi, D.: Using the Canny edge detector for feature extraction and enhancement of remote sensing images. IGARSS 2001 Scanning the Present and Resolving the Future Proceedings IEEE 2001 International Geoscience and Remote Sensing Symposium Cat No01CH37217, pp. 2298–2300 (2001)

    Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Brown, M., Lowe, D.: Recognising Panoramas. In: Proceedings of the 9th International Conference on Computer Vision (ICCV 2003), Nice, France, pp. 1218–1225 (2003)

    Google Scholar 

  4. Brown, M., Lowe, D.: Automatic Panoramic Image Stitching using Invariant Features. International Journal of Computer Vision 74(1), 59–73 (2007)

    Article  Google Scholar 

  5. Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. Nonlinear Analysis: Theory, Methods & Applications 71(12), 1659–1672 (2009)

    Article  Google Scholar 

  6. Derpanis, K.G.: The Harris Corner Detector (2004), www.cse.yorku.ca/~kosta/CompVis_Notes/harris_detector.pdf

  7. Ghahroudi, M.R., Sarshar, M.R., Sabzevari, R.: A Novel Content-Base Image Retrieval Techniques Using Tree matching. In: Proceedings of the World Congress on Engineering 2008, London, U.K., vol. III (2008)

    Google Scholar 

  8. Grąbczewski, K., Jankowski, N.: Saving time and memory in computational intelligence system with machine unification and task spooling. Knowledge-Based Systems 24(5), 570–588 (2011)

    Article  Google Scholar 

  9. Jankowski, N., Grąbczewski, K.: Universal Meta-Learning Architecture and Algorithms. In: Jankowski, N., Duch, W., Grąbczewski, K. (eds.) Meta-Learning in Computational Intelligence. SCI, vol. 358, pp. 1–76. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Kazakova, N., Margala, M., Durdle, N.G.: Sobel edge detection processor for a real-time volume rendering system. In: Proceedings of the 2004 International Symposium on Circuits and Systems, ISCAS 2004, vol. 2, II-913–II-916 (2004)

    Google Scholar 

  11. Mikołajczyk, K., Schmid, C.: A Performance of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Inteligence 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  12. Nowicki, R., Rutkowski, L.: Soft Techniques for Bayesian Classification. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. AISC, pp. 537–544. Springer Physica-Verlag (2003)

    Google Scholar 

  13. PostgreSQL 9.1.2 Documentation, http://www.postgresql.org/docs/9.1/static/textsearch.html

  14. Rutkowski, L., Cierniak, R.: On image compression by competitive neural networks and optimal linear predictors. Signal Processing: Image Communication - a Eurosip Journal 15(6), 559–565 (2000)

    Article  Google Scholar 

  15. Valgren, C., Lilienthal, A.: SIFT, SURF and Seasons: Long-term Outdoor Localization Using Local Features. In: Proc. European Conference on Mobile Robots, pp. 253–258 (2007)

    Google Scholar 

  16. Yan, K., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. II-506–II-513 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rygał, J., Najgebauer, P., Nowak, T., Romanowski, J., Gabryel, M., Scherer, R. (2012). Properties and Structure of Fast Text Search Engine in Context of Semantic Image Analysis. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29347-4_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29347-4_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29346-7

  • Online ISBN: 978-3-642-29347-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics