Vision-Based Recognition of Fingerspelled Acronyms Using Hierarchical Temporal Memory | SpringerLink
Skip to main content

Vision-Based Recognition of Fingerspelled Acronyms Using Hierarchical Temporal Memory

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7267))

Included in the following conference series:

  • 2270 Accesses

Abstract

In this paper, a new, glove-free method for recognition of fingerspelled acronyms using hierarchical temporal memory has been proposed. The task is challenging because many signs look similar from the camera viewpoint. Moreover handshapes are distorted strongly as a result of coarticulation and motion blur, especially in the fluent fingerspelling. In the described work, the problem has been tackled by applying the new, bio-inspired recognition engine, based on structural and functional properties of mammalian neocortex, robust to local changes shape descriptors, and a training scheme allowing for capture possible handshape deformations in a manner that is lexicon independent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Oz, C., Leu, M.C.: Recognition of Finger Spelling of American Sign Language with Artificial Neural Network Using Position/Orientation Sensors and Data Glove. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 157–164. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Tabata, Y., Kuroda, T.: Finger Spelling Recognition using Distinctive Features of Hand Shape. In: Proceedings of International Conference on Disability, Virtual Reality and Associated Technologies, pp. 287–292 (2008)

    Google Scholar 

  3. Shimada, M., Iwasaki, S., Asakura, T.: Finger Spelling Recognition using Neural Network with Pattern Recognition Model. In: SICE Annual Conference, pp. 2458–2463 (2003)

    Google Scholar 

  4. Altun, O., Albayrak, S., Ekinci, A., Bükün, B.: Turkish Fingerspelling Recognition System Using Axis of Least Inertia Based Fast Alignment. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 473–481. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Suraj, M.G., Guru, D.S.: Appearance Based Recognition Methodology for Recognising Fingerspelling Alphabets. In: International Joint Conference on Artificial Intelligence, pp. 605–610 (2007)

    Google Scholar 

  6. Liwicki, S., Everingham, M.: Automatic recognition of fingerspelled words in British sign language. In: Proceedings of the 2nd IEEE Workshop on CVPR for Human Communicative Behavior Analysis (CVPR4HB 2009), in conjunction with CVPR 2009, pp. 50–57 (2009)

    Google Scholar 

  7. Ricco, S., Tomasi, C.: Fingerspelling Recognition through Classification of Letter-to-Letter Transitions. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part III. LNCS, vol. 5996, pp. 214–225. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. George, D., Hawkins, J.: Towards a Mathematical Theory of Cortical Microcircuits. PLoS Computational Biology, e1000532 (2009)

    Google Scholar 

  9. Kapuscinski, T.: Using Hierarchical Temporal Memory for Vision-Based Hand Shape Recognition under Large Variations in Hand”s Rotation. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 272–279. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Kapuściński, T.: Hand Shape Recognition in Real Images Using Hierarchical Temporal Memory Trained on Synthetic Data. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 2. AISC, vol. 84, pp. 193–200. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kapuscinski, T. (2012). Vision-Based Recognition of Fingerspelled Acronyms Using Hierarchical Temporal Memory. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29347-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29347-4_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29346-7

  • Online ISBN: 978-3-642-29347-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics