Robust Neural Network for Novelty Detection on Data Streams | SpringerLink
Skip to main content

Robust Neural Network for Novelty Detection on Data Streams

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7267))

Included in the following conference series:

  • 2307 Accesses

Abstract

In the on-line data processing it is important to detect a novelty as soon as it appears, because it may be a consequence of gross errors or sudden change in the analysed system. In this paper we present a framework of novelty detection, based on the robust neural network. To detect novel patterns we compare responses of two autoregressive neural networks. One of them is trained with a robust learning algorithm designed to remove the influence of outliers, while the other uses simple training, based on the least squares error criterion. We present also a simple and easy to use approach that adapts this technique to data streams. Experiments conducted on data containing novelty and outliers have shown promising performance of the new method, applied to analyse temporal sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barreto, G.A., Aguayo, L.: Time Series Clustering for Anomaly Detection Using Competitive Neural Networks. In: Príncipe, J.C., Miikkulainen, R. (eds.) WSOM 2009. LNCS, vol. 5629, pp. 28–36. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Brotherton, T., Johnson, T., Chadderdon, G.: Classification and Novelty Detection using Linear Models and a Class Dependent - Elliptical Bassi Function Neural Network. In: Proc. of the International Conference on Neural Networks, Anchorage (1998)

    Google Scholar 

  3. Chen, D.S., Jain, R.C.: A robust back propagation learning algorithm for function approximation. IEEE Trans. on Neural Networks 5, 467–479 (1994)

    Article  Google Scholar 

  4. Chu, F., Wang, Y., Zaniolo, C.: An Adaptive Learning Approach for Noisy Data Streams. In: Proc. of the 4th IEEE Int. Conf. on Data Mining, pp. 351–354 (2004)

    Google Scholar 

  5. Chuang, C., Su, S., Hsiao, C.: The Annealing Robust Backpropagation (ARBP) Learning Algorithm. IEEE Trans. on Neural Networks 11, 1067–1076 (2000)

    Article  Google Scholar 

  6. Crook, P., Hayes, G.: A Robot Implementation of a Biologically Inspired Method for Novelty Detection. In: Proceedings of TIMR 2001, Manchester (2001)

    Google Scholar 

  7. Hagan, M.T., Menhaj, M.B.: Training Feedforward Networks with the Marquardt Algorithm. IEEE Trans. on Neural Networks 5(6), 989–993 (1994)

    Article  Google Scholar 

  8. Hawkins, S., He, H., Williams, G.J., Baxter, R.A.: Outlier Detection Using Replicator Neural Networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Himberg, J., Jussi, A., Alhoniemi, E., Vesanto, J., Simula, O.: The Self-Organizing Map as a Tool in Knowledge Engineering. In: Pattern Recognition in Soft Computing Paradigm, Soft Computing, WSP, pp. 38–65 (2001)

    Google Scholar 

  10. Hodge, V.J., Austin, J.: A Survey of Outlier Detection Methodologies. Kluwer Academic Publishers, The Netherlands (2004)

    Google Scholar 

  11. Huber, P.J.: Robust Statistics. Wiley, New York (1981)

    Book  MATH  Google Scholar 

  12. Liano, K.: Robust error measure for supervised neural network learning with outliers. IEEE Transactions on Neural Networks 7, 246–250 (1996)

    Article  Google Scholar 

  13. Liu, J., Gader, P.: Neural Networks with Enhanced Outlier Rejection Ability for Off-line Handwritten Word Recognition. Pattern Recognition 35(10), 2061–2071 (2002)

    Article  MATH  Google Scholar 

  14. Ma, J., Perkins, S.: Online Novelty Detection on Temporal Sequences. In: Proc. of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, D.C, pp. 613–618 (2003)

    Google Scholar 

  15. Marsland, S.: On-Line Novelty Detection Through Self-Organisation, with Application to Inspection Robotics, Ph.D. thesis, Faculty of Science and Engineering, University of Manchester, UK (2001)

    Google Scholar 

  16. Pernia-Espinoza, A.V., Ordieres-Mere, J.B., Martinez-de-Pison, F.J., Gonzalez-Marcos, A.: TAO-robust backpropagation learning algorithm. Neural Networks 18, 191–204 (2005)

    Article  Google Scholar 

  17. Rusiecki, A.: Robust MCD-Based Backpropagation Learning Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 154–163. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Rusiecki, A.: Fast Robust Learning Algorithm Dedicated to LMLS Criterion. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 96–103. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Seborg, D.E., et al.: WIE Process Dynamics and Control, 2nd edn. Wiley (2004)

    Google Scholar 

  20. Taylor, O., Addison, D.: Novelty Detection Using Neural Network Technology. In: Proceedings of the COMADEN Conference (2000)

    Google Scholar 

  21. Weekley, R.A., Goodrich, R.K., Cornman, L.B.: An Algorithm for Classification and Outlier Detection of Time-Series Data. Journal of Atmospheric and Oceanic Technology 27(1), 94–107 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rusiecki, A. (2012). Robust Neural Network for Novelty Detection on Data Streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29347-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29347-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29346-7

  • Online ISBN: 978-3-642-29347-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics