Abstract
The 2-Disjoint Connected Subgraphs problem, given a graph along with two disjoint sets of terminals Z 1 ,Z 2 , asks whether it is possible to find disjoint sets A 1 ,A 2 , such that Z 1 ⊆ A 1 , Z 2 ⊆ A 2 and A 1 ,A 2 induce connected subgraphs. While the naive algorithm runs in O(2n n O(1)) time, solutions with complexity of form O((2 − ε)n) have been found only for special graph classes [15, 19]. In this paper we present an O(1.933n) algorithm for 2-Disjoint Connected Subgraphs in general case, thus breaking the 2n barrier. As a counterpoise of this result we show that if we parameterize the problem by the number of non-terminal vertices, it is hard both to speed up the brute-force approach and to find a polynomial kernel.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Björklund, A.: Determinant sums for undirected hamiltonicity. In: 51th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 173–182 (2010)
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: 39th Annual ACM Symposium on Theory of Computing (STOC), pp. 67–74 (2007)
Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009)
Bodlaender, H.L., Thomasse, S., Yeo, A.: Analysis of data reduction: Transformations give evidence for non-existence of polynomial kernels, technical Report UU-CS-2008-030, Institute of Information and Computing Sciences, Utrecht University, Netherlands (2008)
Calabro, C., Impagliazzo, R., Paturi, R.: The Complexity of Satisfiability of Small Depth Circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 75–85. Springer, Heidelberg (2009)
Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNF-SAT. CoRR abs/1112.2275 (2011)
Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: 52th Annual IEEE Symposium on Foundations of Computer Science, FOCS (2011) (to appear)
Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theor. Comput. Sci. 411(40-42), 3701–3713 (2010)
Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Scheduling Partially Ordered Jobs Faster Than 2n. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 299–310. Springer, Heidelberg (2011)
Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)
Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)
Fomin, F.V., Todinca, I., Villanger, Y.: Exact Algorithm for the Maximum Induced Planar Subgraph Problem. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 287–298. Springer, Heidelberg (2011)
Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 1–32 (2009)
Gray, C., Kammer, F., Löffler, M., Silveira, R.I.: Removing Local Extrema from Imprecise Terrains. CoRR abs/1002.2580 (2010)
van ’t Hof, P., Paulusma, D., Woeginger, G.J.: Partitioning graphs into connected parts. Theor. Comput. Sci. 410(47-49), 4834–4843 (2009)
Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
Lokshtanov, D., Marx, D., Saurabh, S.: Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 777–789 (2011)
Patrascu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1065–1075 (2010)
Paulusma, D., van Rooij, J.M.M.: On partitioning a graph into two connected subgraphs. Theor. Comput. Sci. 412(48), 6761–6769 (2011)
Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995)
van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/Exclusion Meets Measure and Conquer. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 554–565. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O. (2012). Solving the 2-Disjoint Connected Subgraphs Problem Faster Than 2n . In: Fernández-Baca, D. (eds) LATIN 2012: Theoretical Informatics. LATIN 2012. Lecture Notes in Computer Science, vol 7256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29344-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-29344-3_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29343-6
Online ISBN: 978-3-642-29344-3
eBook Packages: Computer ScienceComputer Science (R0)