Solving the 2-Disjoint Connected Subgraphs Problem Faster Than 2 n | SpringerLink
Skip to main content

Solving the 2-Disjoint Connected Subgraphs Problem Faster Than 2n

  • Conference paper
LATIN 2012: Theoretical Informatics (LATIN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7256))

Included in the following conference series:

Abstract

The 2-Disjoint Connected Subgraphs problem, given a graph along with two disjoint sets of terminals Z 1 ,Z 2 , asks whether it is possible to find disjoint sets A 1 ,A 2 , such that Z 1 ⊆ A 1 , Z 2 ⊆ A 2 and A 1 ,A 2 induce connected subgraphs. While the naive algorithm runs in O(2n n O(1)) time, solutions with complexity of form O((2 − ε)n) have been found only for special graph classes [15, 19]. In this paper we present an O(1.933n) algorithm for 2-Disjoint Connected Subgraphs in general case, thus breaking the 2n barrier. As a counterpoise of this result we show that if we parameterize the problem by the number of non-terminal vertices, it is hard both to speed up the brute-force approach and to find a polynomial kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Björklund, A.: Determinant sums for undirected hamiltonicity. In: 51th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 173–182 (2010)

    Google Scholar 

  2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: 39th Annual ACM Symposium on Theory of Computing (STOC), pp. 67–74 (2007)

    Google Scholar 

  3. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L., Thomasse, S., Yeo, A.: Analysis of data reduction: Transformations give evidence for non-existence of polynomial kernels, technical Report UU-CS-2008-030, Institute of Information and Computing Sciences, Utrecht University, Netherlands (2008)

    Google Scholar 

  5. Calabro, C., Impagliazzo, R., Paturi, R.: The Complexity of Satisfiability of Small Depth Circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 75–85. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNF-SAT. CoRR abs/1112.2275 (2011)

    Google Scholar 

  7. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: 52th Annual IEEE Symposium on Foundations of Computer Science, FOCS (2011) (to appear)

    Google Scholar 

  8. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theor. Comput. Sci. 411(40-42), 3701–3713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Scheduling Partially Ordered Jobs Faster Than 2n. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 299–310. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)

    Google Scholar 

  12. Fomin, F.V., Todinca, I., Villanger, Y.: Exact Algorithm for the Maximum Induced Planar Subgraph Problem. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 287–298. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 1–32 (2009)

    Article  MathSciNet  Google Scholar 

  14. Gray, C., Kammer, F., Löffler, M., Silveira, R.I.: Removing Local Extrema from Imprecise Terrains. CoRR abs/1002.2580 (2010)

    Google Scholar 

  15. van ’t Hof, P., Paulusma, D., Woeginger, G.J.: Partitioning graphs into connected parts. Theor. Comput. Sci. 410(47-49), 4834–4843 (2009)

    Article  MATH  Google Scholar 

  16. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lokshtanov, D., Marx, D., Saurabh, S.: Known Algorithms on Graphs of Bounded Treewidth are Probably Optimal. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 777–789 (2011)

    Google Scholar 

  18. Patrascu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1065–1075 (2010)

    Google Scholar 

  19. Paulusma, D., van Rooij, J.M.M.: On partitioning a graph into two connected subgraphs. Theor. Comput. Sci. 412(48), 6761–6769 (2011)

    Article  MATH  Google Scholar 

  20. Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/Exclusion Meets Measure and Conquer. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 554–565. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O. (2012). Solving the 2-Disjoint Connected Subgraphs Problem Faster Than 2n . In: Fernández-Baca, D. (eds) LATIN 2012: Theoretical Informatics. LATIN 2012. Lecture Notes in Computer Science, vol 7256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29344-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29344-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29343-6

  • Online ISBN: 978-3-642-29344-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics