Abstract
In this paper we describe a special group of block upper triangular matrices with 3 ×3 blocks and elements in a finite field. We also verify that, with properly chosen parameters, the cardinality of the subgroup generated by one matrix of this group can be as large as required. Then we introduce two examples of this group of matrices employed in cryptography among the many available: a key exchange scheme and a pseudorandom generator.
Partially supported by University of Alicante grants GRE09-02 and GRE10-34 and Generalitat Valenciana grant GV/2011/01.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvarez, R., Ferrández, F., Vicent, J.F., Zamora, A.: Applying Quick Exponentiation for Block Upper Triangular Matrices. Science Direct 183, 729–737 (2006)
Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptography. Mathematical Research Letters 6, 287–291 (1999)
Coppersmith, D., Odlyzko, A., Schroeppel, R.: Discrete logarithms in GF(p). Algorithmica, 1–15 (1986)
Diffie, W., Hellman, M.: New directions In Cryptography. IEEE Trans. Information Theory 22, 644–654 (1976)
Lee, P.J., Lim, C.H.: Method for Exponentiation in Public-Key Cryptosystems. United States Patent 5,999,627 (1999)
Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications. Cambridge University Press (1994)
McCurley, K.: The discret logarithm problem. Cryptology and Computational Number Theory. In: Proceedings of Symposia in Applied Mathematics, vol. 42, pp. 49–74 (1990)
Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Florida (2001)
Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Trans. Info. Theory 24, 106–110 (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Álvarez, R., Martínez, F., Vicent, JF., Zamora, A. (2012). Cryptographic Applications of 3x3 Block Upper Triangular Matrices. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28931-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-28931-6_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28930-9
Online ISBN: 978-3-642-28931-6
eBook Packages: Computer ScienceComputer Science (R0)