Abstract
We formalize delimited control with multiple prompts, in the style of Parigot’s λμ-calculus, through a series of incremental extensions by starting with the pure λ-calculus. Each language inherits the semantics and reduction theory of its parent, giving a systematic way to describe each level of control.
Chapter PDF
Similar content being viewed by others
References
Ariola, Z.M., Herbelin, H.: Control reduction theories: The benefit of structural substitution. J. Funct. Program. 18, 373–419 (2008)
Ariola, Z.M., Herbelin, H., Sabry, A.: A type-theoretic foundation of delimited continuations. HOSC 22(3), 233–273 (2009)
Curien, P.L., Herbelin, H.: The duality of computation. In: ICFP 2000, pp. 233–243 (2000)
Danvy, O.: On evaluation contexts, continuations, and the rest of the computation. In: ACM SIGPLAN Workshop on Continuations, pp. 13–23 (2004)
Danvy, O., Filinski, A.: A functional abstraction of typed contexts. Tech. Rep. 89/12, DIKU, University of Copenhagen, Copenhagen, Denmark (1989)
Danvy, O., Millikin, K.: Refunctionalization at work. Science of Computer Programming 74(8), 534–549 (2009)
Danvy, O., Filinski, A.: Abstracting control. In: Proceedings of the 1990 ACM Conference on LISP and Functional Programming, pp. 151–160. ACM Press (1990)
Dybvig, R., Jones, S.P., Sabry, A.: A monadic framework for delimited continuations. Journal of Functional Programming 17(06), 687–730 (2007)
Felleisen, M.: The theory and practice of first-class prompts. In: POPL 1988 (1988)
Felleisen, M., Friedman, D., Kohlbecker, E.: A syntactic theory of sequential control. Theoretical Computer Science 52(3), 205–237 (1987)
Filinski, A.: Representing monads. In: POPL 1994, pp. 446–457 (1994)
Filinski, A.: Representing layered monads. In: POPL 1999, pp. 175–188 (1999)
Garcia, R., Lumsdaine, A., Sabry, A.: Lazy evaluation and delimited control. In: Proceedings of POPL 2009, pp. 153–164. ACM, New York (2009)
Kiselyov, O.: Delimited control in OCaml, abstractly and concretely: System description. Functional and Logic Programming, 304–320 (2010)
Kiselyov, O., Shan, C.-c., Sabry, A.: Delimited dynamic binding. In: Proceedings of the Eleventh ACM SIGPLAN International Conference on Functional Programming, ICFP 2006, pp. 26–37. ACM, New York (2006)
Materzok, M., Biernacki, D.: Subtyping delimited continuations. In: Proceeding of the 16th ACM SIGPLAN International Conference on Functional Programming, ICFP 2011, pp. 81–93. ACM, New York (2011)
Moreau, L.: A syntactic theory of dynamic binding. HOSC 11(3), 233–279 (1998)
Parigot, M.: λμ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)
Reynolds, J.C.: Definitional interpreters for higher-order programming languages. In: Proceedings of the 25th ACM National Conference, pp. 717–740 (1972)
Sitaram, D., Felleisen, M.: Reasoning with continuations II: Full abstraction for models of control. In: Conference on Lisp and Functional Programming (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Downen, P., Ariola, Z.M. (2012). A Systematic Approach to Delimited Control with Multiple Prompts. In: Seidl, H. (eds) Programming Languages and Systems. ESOP 2012. Lecture Notes in Computer Science, vol 7211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28869-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-28869-2_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28868-5
Online ISBN: 978-3-642-28869-2
eBook Packages: Computer ScienceComputer Science (R0)