Abstract
Recent advances in DNA sequencing methodologies have caused an exponential growth of publicly available genomic sequence data. By consequence, many computational biologists have intensified studies in order to understand the content of these sequences and, in some cases, to search for association to disease. However, the lack of public available tools is an issue, specially when related to efficiency and usability. In this paper, we present Exon, a user-friendly solution containing tools for online analysis of DNA sequences through compression based profiles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allison, L., Stern, L., Edgoose, T., Dix, T.I.: Sequence complexity for biological sequence analysis. Computers & Chemistry 24, 43–55 (2000)
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of Molecular Biology 215(3), 403–410 (1990); doi:10.1006/jmbi.1990.9999
Cao, M.D., Dix, T.I., Allison, L., Mears, C.: A simple statistical algorithm for biological sequence compression. In: Proc. of the Data Compression Conf., DCC 2007, Snowbird, Utah, pp. 43–52 (2007)
Crochemore, M., Vrin, R.: Zones of low entropy in genomic sequences. Computers & Chemistry, 275–282 (1999)
Dix, T.I., Powell, D.R., Allison, L., Bernal, J., Jaeger, S., Stern, L.: Comparative analysis of long DNA sequences by per element information content using different contexts. BMC Bioinformatics 8(suppl. 2), S10 (2007); doi:10.1186/1471-2105-8-S2-S10
Gusev, V.D., Nemytikova, L.A., Chuzhanova, N.A.: On the complexity measures of genetic sequences. Bioinformatics 15(12), 994–999 (1999)
Nan, F., Adjeroh, D.: On the complexity measures for biological sequences. In: Proc. of the IEEE Computational Systems Bioinformatics Conference, CSB 2004, Stanford, CA (2004)
Pinho, A.J., Ferreira, P.J.S.G., Neves, A.J.R., Bastos, C.A.C.: On the representability of complete genomes by multiple competing finite-context (Markov) models. PLoS ONE 6(6), e21, 588 (2011); doi:10.1371/journal.pone.0021588
Pinho, A.J., Pratas, D., Ferreira, P.J.S.G.: Bacteria DNA sequence compression using a mixture of finite-context models. In: Proc. of the IEEE Workshop on Statistical Signal Processing, Nice, France (2011)
Pinho, A.J., Pratas, D., Ferreira, P.J.S.G., Garcia, S.P.: Symbolic to numerical conversion of DNA sequences using finite-context models. In: Proc. of the 19th European Signal Processing Conf., EUSIPCO 2011, Barcelona, Spain (2011)
Pirhaji, L., Kargar, M., Sheari, A., Poormohammadi, H., Sadeghi, M., Pezeshk, H., Eslahchi, C.: The performances of the chi-square test and complexity measures for signal recognition in biological sequences. Journal of Theoretical Biology 251(2), 380–387 (2008)
Pratas, D., Bastos, C.A.C., Pinho, A.J., Neves, A.J.R., Matos, L.: DNA synthetic sequences generation using multiple competing Markov models. In: Proc. of the IEEE Workshop on Statistical Signal Processing, Nice, France (2011)
Pratas, D., Pinho, A.J.: Compressing the human genome using exclusively Markov models. In: Proc. of the 5th Int. Conf. on Practical Applications of Computational Biology & Bioinformatics, PACBB 2011. AISC, vol. 93, pp. 213–220 (2011)
Roy, A., Carroll, M., Kass, D., Nguyen, S., Salem, A., Batzer, M., Deininger, P.: Recently integrated human alu repeats: finding needles in the haystack. Genetica 107(1-3), 149–161 (1999)
Troyanskaya, O.G., Arbell, O., Koren, Y., Landau, G.M., Bolshoy, A.: Sequence complexity profiles of prokaryotic genomic sequences: a fast algorithm for calculating linguistic complexity. Bioinformatics 18(5), 679–688 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pratas, D., Pinho, A.J., Garcia, S.P. (2012). Exon: A Web-Based Software Toolkit for DNA Sequence Analysis. In: Rocha, M., Luscombe, N., Fdez-Riverola, F., Rodríguez, J. (eds) 6th International Conference on Practical Applications of Computational Biology & Bioinformatics. Advances in Intelligent and Soft Computing, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28839-5_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-28839-5_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28838-8
Online ISBN: 978-3-642-28839-5
eBook Packages: EngineeringEngineering (R0)