Abstract
This paper presents an improved Differential Evolution algorithm (IDE). It is aimed at improving its performance in estimating the relevant parameters for metabolic pathway data to simulate glycolysis pathway for yeast. Metabolic pathway data are expected to be of significant help in the development of efficient tools in kinetic modeling and parameter estimation platforms. Nonetheless, due to the noisy data and difficulty of the system in estimating myriad of parameters, many computation algorithms face obstacles and require longer computational time to estimate the relevant parameters. The IDE proposed in this paper is a hybrid of a Differential Evolution algorithm (DE) and a Kalman Filter (KF). The outcome of IDE is proven to be superior than a Genetic Algorithm (GA) and DE. The results of IDE from this experiment show estimated optimal kinetic parameters values, shorter computation time and better accuracy of simulated results compared to the other estimation algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lillacci, G., Khammash, M.: Parameter Estimation and Model Selection in Computational Biology. PLoS Computational Biology 6(3), 1–17 (2010), doi:10.1371/journal.pcbi .1000696
Chou, I.C., Voit, E.O.: Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathematical Biosciences 219, 57–83 (2009), doi:10.1016/j.mbs.2009.03.002
Wang, F.S., Chiou, J.P.: Differential evolution for dynamic optimization of differential-algebraic systems. In: IEEE International Conference on Evolutionary Computation, April 13-16, pp. 531–536 (1997), doi:10.1109/ICEC.1997.592367
Chassagnole, C., Doncescu, A., Manyri, L., Yang, L.T.: Parameters Estimation by Differential Evolutionary Algorithms for Simulation of metabolic pathways in Escherichia coli. In: International Conference on AINA 2006, April 18-20, pp. 593–598. IEEE Computer Science (2006), doi:10.1109/AINA.2006.258
Moonchai, S., Madlhoo, W., Jariyachavalit, K., Shimizu, H., Shioya, S., Chauvatcharin, S.: Application of a mathematical model and Differential Evolution algorithm approach to optimization of bacteriocin production by Lactococcus lactis C7. Bioprocess Biosyst. Eng. 28, 1–17 (2005), doi:10.1007/s00449-005-0004-5
Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997), doi:10.1023/A:1008202821328
Cetto, J.A.: The Kalman Filter. Institut de Robotica i Informatica Industrial, UPC-CSIC. Llorens i Artigas 4-6, Edifici U, 2a pl. Barcelona 08028, Spain (2002), http://digital.csic.es/bitstream/10261/30069/1/doc1.pdf (accessed January 22, 2011)
Nielson, K., Sorensen, P.G., Hynne, F., Busse, H.G.: Sustained oscillations in glycolysis: an experimental and theoretical study of chaotic and complex periodic behavior and of quenching of simple oscillations. Biophysical Chemistry 72, 49–62 (1998), doi:10.1016/S0301-4622(98)00122-7
Ijaz, U.Z., Khambampati, A.K., Lee, J.S., Kim, S., Kim, K.Y.: Nonstationary phase boundary estimation in electrical impedance tomography using unscented Kalman filter. Journal of Computational Physics 227(15), 7089–7112 (2008), doi:10.1016/j.jcp.2007.12.025
Feng, L., Yang, Y.F., Wang, Y.X.: A New Approach to Adapting Control Parameters in Differential Evolution Algorithm. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 21–30. Springer, Heidelberg (2008), doi:10.1007/978-3-540-89694-4_3
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chong, C.K. et al. (2012). Using an Improved Differential Evolution Algorithm for Parameter Estimation to Simulate Glycolysis Pathway. In: Omatu, S., De Paz Santana, J., González, S., Molina, J., Bernardos, A., Rodríguez, J. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28765-7_85
Download citation
DOI: https://doi.org/10.1007/978-3-642-28765-7_85
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28764-0
Online ISBN: 978-3-642-28765-7
eBook Packages: EngineeringEngineering (R0)