Abstract
This paper presents a humanoid navigation system on uneven terrains that include unknown roughness on the order of a few centimeters. A footstep planner decides where to step by using the known terrain shape. A walking balance controller that consists of a 20[ms] cycle dynamically stable motion pattern generation loop and a 1[ms] cycle sensor feedback loop allows the robot to step to the planned footprints and is able to manage a few centimeters of uncertainty. The free leg trajectories and the torso height trajectory are also designed automatically according to the given terrain shape and the planned footprints. We introduced an interactive navigation system that uses mixed reality technology. An outline of the path can be drawn on the real environment to give the commands to the robot in the system. Each developed technology is implemented and integrated on the full-size humanoid HRP-2. Experimental results walking over multi-level platform with unknown small obstacles show the performance of the proposed system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hirai, K.: Current and future perspective of Honda humanoid robot. In: Proc. of 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 1997), pp. 500–508 (1997)
Yamaguchi, J., Inoue, S., Nishino, D., Takanishi, A.: Development of a bipedal humanoid robot having antagonistic driven joints and three dof trunk. In: Proc. of the 1998 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 96–101 (1998)
Nagasaka, K., Inaba, M., Inoue, H.: Walking pattern generation for a humanoid robot based on optimal gradient method. In: Proc. of 1999 IEEE Int. Conf. on Systems, Man, and Cybernetics (1999)
Setiawan, S.A., Hyon, S.H., Yamaguchi, J., Takanishi, A.: Physical interaction between human and a bipedal humanoid robot – realization of human-follow walking. In: Proceddings of the 1999 IEEE International Conference on Robotics and Automation, pp. 361–367 (1999)
Nishiwaki, K., Sugihara, T., Kagami, S., Inaba, M., Inoue, H.: Realtime generation of humanoid walking trajectory by mixture and connection of pre-designed motions – online control by footprint specification. In: Proc. of International Conference on Robotics and Automation (ICRA 2001), pp. 4110–4115 (2001)
Yokoi, K., Kanehiro, F., Kaneko, K., Fujiwara, K., Kajita, S., Hirukawa, H.: A honda humanoid robot controlled by aist software. In: Proc. of the IEEE-RAS International Conference on Humanoid Robots, pp. 259–264 (2001)
Kaneshima, Y., Sugahara, Y., Ando, S., Sato, M., okLim, H., Takanishi, A.: Quasi real-time motion pattern generation for bipedal humanoid robots. In: Proceedings of 19th Annual Conference on Robotics Society of Japan, pp. 987–988 (2001) (in Japanese)
Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., Inoue, H.: Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired zmp. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2002), pp. 2684–2689 (2002)
Löffler, K., Gienger, M., Pfeiffer, F.: Sensor and control design of a dynamically stable biped robot. In: IEEE International Conference on Robotics and Automation, pp. 484–490 (2003)
Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: An analytical method on real-time gait planning for a humanoid robot. In: Proceddings of IEEE-RAS/RSJ International Conference on Humanoid Robots, p. 60 (2004)
Sugihara, T., Nakamura, Y.: A fast online gait planning with boundary condition relaxation for humanoid robots. In: IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 306–311 (2005)
Park, I.-W., Kim, J.-Y., Lee, J., Oh, J.-H.: Online free walking trajectory generation for biped humanoid robot KHR-3 (HUBO). In: IEEE International Conference on Robotics and Automation, pp. 2667–2672 (2006)
Buschmann, T., Lohmeier, S., Bachmayer, M., Ulbrich, H., Pfeiffer, F.: A collocation method for real-time walking pattern generation. In: Proceedings of IEEE-RAS International Conference on Humanoid Robots (2007)
Dimitrov, D., Ferreau, J., Wieber, P.-B., Diehl, M.: On the implementation of model predictive control for on-line walking pattern generation. In: IEEE International Conference on Robotics and Automation, ICRA 2008 (2008)
Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: Proc. of IEEE International Conference on Robotics and Automation (ICRA 2003), pp. 1620–1626 (2003)
Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Resolved momentum control: Humanoid motion planning based on the linear and angular momentum. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1644–1650 (2003)
Chestnutt, J., Nishiwaki, K., Kuffner, J., Kagami, S.: An adaptive action model for legged navigation planning. In: Proceedings of the IEEE/RAS International Conference on Humanoid Robots, Pittsburgh, PA (November 2007)
Chestnutt, J., Nishiwaki, K., Kuffner, J., Kagami, S.: Interactive control of humanoid navigation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag GmbH Berlin Heidelberg
About this chapter
Cite this chapter
Nishiwaki, K., Chestnutt, J., Kagami, S. (2014). Planning and Control of a Humanoid Robot for Navigation on Uneven Multi-scale Terrain. In: Khatib, O., Kumar, V., Sukhatme, G. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28572-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-28572-1_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28571-4
Online ISBN: 978-3-642-28572-1
eBook Packages: EngineeringEngineering (R0)