Neighborhood Selection and Eigenvalues for Embedding Data Complex in Low Dimension | SpringerLink
Skip to main content

Neighborhood Selection and Eigenvalues for Embedding Data Complex in Low Dimension

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7196))

Included in the following conference series:

  • 1682 Accesses

Abstract

LLE(Local linear embedding) and Isomap are widely used approaches for dimension reduction. For LLE, the neighborhood selection approach is an important research issue. For different types of datasets, we need different neighborhood selection approaches to have better chance for finding reasonable representation within the required number of dimensions. In this paper, the ε-distance approach and a modified version of k-nn method are introduced. For LLE and Isomap, the eigenvectors obtained from these methods are much more discussed, but there are more information hidden in the corresponding eigenvalues which can be used for finding embeddings contains more data information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sam, R., Lawrence, S.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  2. Yeh, T.T., Chen, T.-Y., Chen, Y.-C., Shih, W.-K.: Efficient Parallel Algorithm for Nonlinear Dimensionality Reduction on GPU. In: IEEE International Conference on Granular Computing, pp. 592–597. IEEE Computer Society (2010)

    Google Scholar 

  3. Chang, H., Yeung, D.-Y.: Robust Locally Linear Embedding. Pattern Recognition 39, 1053–1065 (2006)

    Article  MATH  Google Scholar 

  4. Pan, Y., Ge, S.S., Mamun, A.A.: Weighted Locally Linear Embedding for Dimension Reduction. Pattern Recognition 42, 798–811 (2009)

    Article  MATH  Google Scholar 

  5. Wen, G., Jiang, L., Wen, J.: Local Relative Transformation with Application to Isometric Embedding. Pattern Recognition Letters 30, 203–211 (2009)

    Article  Google Scholar 

  6. Zuo, W., Zhang, D., Wang, K.: On Kernel Difference-weighted K-nearest Neighbor Classification. Pattern Analysis and Applications 11, 247–257 (2008)

    Article  MathSciNet  Google Scholar 

  7. Wen, G., Jiang, L.-J., Wen, J., Shadbolt, N.R.: Clustering-Based Nonlinear Dimensionality Reduction on Manifold. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 444–453. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Wei, L., Zeng, W., Wang, H.: K-means Clustering with Manifold. In: Seventh International Conference on Fuzzy Systems and Knowledge Discovery, pp. 2095–2099. IEEE Xplore Digital Library and EI Compendex (2010)

    Google Scholar 

  9. Joshua, T., de Vin, S., John, C.L.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  10. Lawrence, S., Sam, R.: Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds. Journal of Machine Learning Research 4, 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liou, JW., Liou, CY. (2012). Neighborhood Selection and Eigenvalues for Embedding Data Complex in Low Dimension. In: Pan, JS., Chen, SM., Nguyen, N.T. (eds) Intelligent Information and Database Systems. ACIIDS 2012. Lecture Notes in Computer Science(), vol 7196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28487-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28487-8_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28486-1

  • Online ISBN: 978-3-642-28487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics