Low Power or High Performance? A Tradeoff Whose Time Has Come (and Nearly Gone) | SpringerLink
Skip to main content

Low Power or High Performance? A Tradeoff Whose Time Has Come (and Nearly Gone)

  • Conference paper
Wireless Sensor Networks (EWSN 2012)

Abstract

Some have argued that the dichotomy between high-performance operation and low resource utilization is false – an artifact that will soon succumb to Moore’s Law and careful engineering. If such claims prove to be true, then the traditional 8/16- vs. 32-bit power-performance tradeoffs become irrelevant, at least for some low-power embedded systems. We explore the veracity of this thesis using the 32-bit ARM Cortex-M3 microprocessor and find quite substantial progress but not deliverance. The Cortex-M3, compared to 8/16-bit microcontrollers, reduces latency and energy consumption for computationally intensive tasks as well as achieves near parity on code density. However, it still incurs a ~2× overhead in power draw for “traditional” sense-store-send-sleep applications. These results suggest that while 32-bit processors are not yet ready for applications with very tight power requirements, they are poised for adoption everywhere else. Moore’s Law may yet prevail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdelzaher, T., Anokwa, Y., Boda, P., Burke, J., Estrin, D., Guibas, L., Kansal, A., Madden, S., Reich, J.: Mobiscopes for human spaces. IEEE Pervasive Computing 6, 20–29 (2007)

    Article  Google Scholar 

  2. Ali, A.M., Yao, K., Collier, T.C., Taylor, C.E., Blumstein, D.T., Girod, L.: An empirical study of collaborative acoustic source localization. In: IPSN (2007)

    Google Scholar 

  3. ARM Holdings. Cortex-M3 Processor, http://www.arm.com/products/processors/cortex-m/cortex-m3.php

  4. Aslam, F., Schindelhauer, C., Ernst, G., Spyra, D., Meyer, J., Zalloom, M.: Introducing takatuka: a java virtualmachine for motes. In: SenSys (2008)

    Google Scholar 

  5. Atmel Corporation. Atmel ATMega 128 Microcontroller Datasheet, http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

  6. Atmel Corporation. AT91 ARM Cortex-M3 based MCUs: SAM3U Specifications (2009)

    Google Scholar 

  7. Chen, Y., Gnawali, O., Kazandjieva, M., Levis, P., Regehr, J.: Surviving Sensor Network Software Faults. In: SOSP (2009)

    Google Scholar 

  8. Coalition for American Trauma Care. Action Needed to Bolster Nation’s Emergency Care System (June 2006)

    Google Scholar 

  9. Crossbow Inc. Imote2: High-Performance Wireless Sensor Network Node (2007), http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/Imote2_Datasheet.pdf

  10. Crossbow Technology Inc. MICAz wireless measurement system (June 2004), http://www.xbow.com

  11. Free2move AB. Low power Audio BluetoothTM Module with antenna F2M03ALA Datasheet (2007), http://www.free2move.se

  12. Freescale Semiconductor. Three axis low-g micromachined accelerometer, http://www.freescale.com

  13. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for network programming at scale. In: SenSys (November 2004)

    Google Scholar 

  14. Klues, K., Handziski, V., Lu, C., Wolisz, A., Culler, D., Gay, D., Levis, P.: Integrating Concurrency Control and Energy Management in Device Drivers. In: SOSP (2007)

    Google Scholar 

  15. Klues, K., Liang, C.J., Paek, J., Musaloiu-E, R., Govindan, R., Terzis, A., Levis, P.: TOSThreads: Safe and Non-invasive Preemption in TinyOS. In: SenSys (November 2009)

    Google Scholar 

  16. Ko, J., Dawson-Haggerty, S., Gnawali, O., Culler, D., Terzis, A.: Evaluating the Performance of RPL and 6LoWPAN in TinyOS. In: Proceedings of the Workshop on Extending the Internet to Low Power and Lossy Networks (IP+SN 2011) (April 2011)

    Google Scholar 

  17. Ko, J., Lim, J., Chen, Y., Musaloiu-E., R., Terzis, A., Masson, G., Gao, T., Destler, W., Selavo, L., Dutton, R.: MEDiSN: Medical Emergency Detection in Sensor Networks. ACM Transactions on Embedded Computing Systems, TECS (2010)

    Google Scholar 

  18. Kusy, B., Richter, C., Hu, W., Afanasyev, M., Jurdak, R., Brunig, M., Abbott, D., Huynh, C., Ostry, D.: Radio diversity for reliable communication in wsns. In: IPSN (April 2011)

    Google Scholar 

  19. Liang, C.-J.M., Priyantha, N.B., Liu, J., Terzis, A.: Surviving wi-fi interference in low power zigbee networks. In: SenSys (2010)

    Google Scholar 

  20. Lorincz, K., Chen, B.R., Challen, G.W., Chowdhury, A.R., Patel, S., Bonato, P., Welsh, M.: Mercury: A Wearable Sensor Network Platform for High-Fidelity Motion Analysis. In: SenSys (2009)

    Google Scholar 

  21. Luo, L., Cao, Q., Huang, C., Abdelzaher, T., Stankovic, J.A., Ward, M.: Enviromic: Towards cooperative storage and retrieval in audio sensor networks. In: ICDCS (2007)

    Google Scholar 

  22. Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: CodeBlue: An Ad Hoc Sensor Network Infrastructure for Emergency Medical Care. In: MobiSys 2004 Workshop on Applications of Mobile Embedded Systems (June 2004)

    Google Scholar 

  23. McIntire, D., Ho, K., Yip, B., Singh, A., Wu, W., Kaiser, W.: The low power energy aware processing (LEAP) embedded networked sensor system. In: IPSN/SPOTS (2006)

    Google Scholar 

  24. Moss, D., Hui, J., Klues, K.: TEP 105: Low Power Listening (2008), http://www.tinyos.net/tinyos-2.x/doc/pdf/tep105.pdf

  25. Paek, J., Greenstein, B., Gnawali, O., Jang, K.-Y., Joki, A., Vieira, M., Hicks, J., Estrin, D., Govindan, R., Kohler, E.: The tenet architecture for tiered sensor networks. ACM Transactions on Sensor Networks (TOSN) 6(4) (2010)

    Google Scholar 

  26. Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low power wireless research. In: IPSN (2005)

    Google Scholar 

  27. Reddy, P.G., Sridhar, N.: Lakon: a middle-ground approach to high-frequency data acquisition and in-network processing in sensor networks. In: IPSN. ACM (2010)

    Google Scholar 

  28. Rumberg, B., Graham, D.W., Kulathumani, V.: Hibernets: energy-efficient sensor networks using analog signal processing. In: IPSN (2010)

    Google Scholar 

  29. Sadasivan, S.: An Introduction to the ARM Cortex-M3 Processor. Technical report (2006)

    Google Scholar 

  30. Sadler, C., Martonosi, M.: Data compression algorithms for energy-constrained devices in delay tolerant networks. In: SenSys (November 2006)

    Google Scholar 

  31. Schmid, T., Shea, R., Srivastava, M.B., Dutta, P.: Disentangling wireless sensing from mesh networking. In: HotEmNets (2010)

    Google Scholar 

  32. Schott, B., Bajura, M., Czarnaski, J., Flidr, J., Tho, T., Wang, L.: A modular power-aware microsensor with >1000x dynamic power range. In: IPSN (2005)

    Google Scholar 

  33. Simon, D., Cifuentes, C., Cleal, D., Daniels, J., White, D.: Java on the bare metal of wireless sensor devices: the squawk java virtual machine. In: International Conference on Virtual Execution Environments (2006)

    Google Scholar 

  34. Skraba, P., Guibas, L.: Energy Efficient Intrusion Detection in Camera Sensor Networks. In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007. LNCS, vol. 4549, pp. 309–323. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  35. Smith, R.B.: Spotworld and the sun spot. In: IPSN (April 2007)

    Google Scholar 

  36. Texas Instruments. CC2520: Second generation 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver (2007), http://www.ti.com/lit/gpn/cc2520

  37. Texas Instruments Incorporated. MSP430 Datasheet

    Google Scholar 

  38. Wood, A., Stankovic, J., Virone, G., Selavo, L., He, Z., Cao, Q., Doan, T., Wu, Y., Fang, L., Stoleru, R.: Context-Aware Wireless Sensor Networks for Assisted Living and Residential Monitoring. IEEE Network (2008)

    Google Scholar 

  39. Xu, N., Rangwala, S., Chintalapudi, K.K., Ganesan, D., Broad, A., Govindan, R., Estrin, D.: A Wireless Sensor Network for Structural Monitoring. In: SenSys (November 2004)

    Google Scholar 

  40. Zephyr Technology. BioHarness BT (2010), http://www.zephyr-technology.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gian Pietro Picco Wendi Heinzelman

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ko, J. et al. (2012). Low Power or High Performance? A Tradeoff Whose Time Has Come (and Nearly Gone). In: Picco, G.P., Heinzelman, W. (eds) Wireless Sensor Networks. EWSN 2012. Lecture Notes in Computer Science, vol 7158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28169-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28169-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28168-6

  • Online ISBN: 978-3-642-28169-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics