Abstract
In paper Molinelli et al, 1998 a general model allowing the integration of different kinds of calculus with diagrams appearing in several fields of Science and Engineering was introduced. And also, a computer aided system enabling some manipulation of this graphical stuff was presented.
Traditionally most of these diagrams have been used as an aid in the development of complex calculus, although the lack of a solid theoretical foundation has prevent the existence of practical tools.
As a contribution to that necessary background, we present here an implementation of the diagrams using Coq and a first discussion on the confluence of the rewriting based on the interchange law.
Supported by the project: TIN2010-20959.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bonfante, G., Guiraud, Y.: Polygraphic programs and polynomial–time functions. LMCS 5 (2009)
Bertot, I., Casteran, P.: Interactive Theorem Proving and Program Development. Springer, Heidelberg (2004)
Coecke, R.: Course lecture notes HT. Oxford Computer Laboratory (2010)
Coquand, T.: An Introduction to Type Theory. Notes of the FPCL summer school, Glasgow (1989)
Dixon, L., Duncan, R.: Graphical Reasoning in Compact Closed Categories for Quantum Computation. Journal Annals of Mathematics and Artificial Intelligence 56(1) (2009)
Coquand, T., Pauling–Mohring, C.: Inductively defined types. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)
Guiraud, Y., Malbos, P.: Higher-dimensional categories with finite derivation type. Theory and Applications of Categories 22(18) (2009)
Lafont, I.: Diagram Rewriting and Operads (2010), http://iml.univ-mrs.fr/~lafont/recherche.html
Mimram, S.: Computing Critical Pairs in 3-Polygraphs. In: CEA. CAM-CAD Workshop (2009)
Pauling-Mohring, C.: Inductive Definitions in the System Coq–Rules and Properties. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345. Springer, Heidelberg (1993)
Molinelli, J.M., Barja, J.M., Blanco, A., Freire, J.L.: An Automatic Calculator with Penrose Diagrams. In: Moreno-Díaz, R., Pichler, F. (eds.) EUROCAST 1997. LNCS, vol. 1333, pp. 252–269. Springer, Heidelberg (1997)
Pfenning, F., Pauling–Mohring, C.: Inductively defined types in the Calculus of Constructions. In: Schmidt, D.A., Main, M.G., Melton, A.C., Mislove, M.W. (eds.) MFPS 1989. LNCS, vol. 442, pp. 209–228. Springer, Heidelberg (1990)
Simpson, C.: http://ncatlab.org/nlab/show/strict+2-category
Tabareau, N.: Aspect Oriented Programming: a language for 2-categories (2010), http://hal.archives-ouvertes.fr/
Werner, B., Paulin–Mohrin, C.: ENSTA Course Notes (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Freire Nistal, J.L., Blanco Ferro, A., Molinelli Barba, J.M., Freire Brañas, E. (2012). On the Confluence of the Graphic Calculus with Penrose Diagrams (I). In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol 6927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27549-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-27549-4_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27548-7
Online ISBN: 978-3-642-27549-4
eBook Packages: Computer ScienceComputer Science (R0)