Differential Behaviour of Iteratively Generated Curves | SpringerLink
Skip to main content

Differential Behaviour of Iteratively Generated Curves

  • Conference paper
Curves and Surfaces (Curves and Surfaces 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6920))

Included in the following conference series:

Abstract

The aim of our work is to specify and develop a geometric modeler, based on the formalism of iterated function systems with the following objectives: access to a new universe of original, various, aesthetic shapes, modeling of conventional shapes (smooth surfaces, solids) and unconventional shapes (rough surfaces, porous solids) by defining and controlling the relief (surface state) and lacunarity (size and distribution of holes). In this context we intend to develop differential calculus tools for fractal curves and surfaces defined by IFS. Using local fractional derivatives, we show that, even if most fractal curves are nowhere differentiable, they admit a left and right half-tangents, what gives us an additional parameter to characterize shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnsley, M.: Fractals everywhere. Academic Press Professional, Inc., San Diego (1988)

    MATH  Google Scholar 

  2. Bensoudane, H.: Étude différentielle des formes fractales. PhD thesis, Université de Bourgogne (2009)

    Google Scholar 

  3. Bensoudane, H., Gentil, C., Neveu, M.: Fractional half-tangent of a curve described by iterated function system. Journal Of Applied Functional Analysis 4(2), 311–326 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Boier-Martin, I., Zorin, D.: Differentiable parameterization of Catmull-Clark subdivision surfaces. In: SGP 2004: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 155–164. ACM, New York (2004)

    Chapter  Google Scholar 

  5. De Boor, C.: Local corner cutting and the smoothness of the limiting curve. Computer Aided Geometric Design 7(5), 389–397 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cochran, W.O., Lewis, R.R., Hart, J.C.: The normal of a fractal surface. The Visual Computer 17(4), 209–218 (2001)

    Article  MATH  Google Scholar 

  7. Gentil, C.: Les fractales en synthèse d’image: le modèle IFS. PhD thesis, Université LYON 1 (1992)

    Google Scholar 

  8. Gregory, J.A., Qu, R.: Nonuniform corner cutting. Computer Aided Geometric Design 13(8), 763–772 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hutchinson, J.: Fractals and self-similarity. Indiana University Journal of Mathematics 30(5), 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khodakovsky, A., Schröder, P.: Fine level feature editing for subdivision surfaces. In: SMA 1999: Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications, pp. 203–211. ACM, New York (1999)

    Chapter  Google Scholar 

  11. Kolwankar, K.M., Gangal, A.D.: Hölder exponents of irregular signals and local fractional derivatives. Pramana 48(1), 49–68 (1997)

    Article  Google Scholar 

  12. Kolwankar, K.M., Gangal, A.D.: Local fractional derivatives and fractal functions of several variables. In: Proc. of Fractals in Engineering (1997)

    Google Scholar 

  13. Daniel Mauldin, R., Williams, S.C.: Hausdorff dimension in graph directed constructions. Transactions of the American Mathematical Society 309(2), 811–829 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Paluszny, M., Prautzsch, H., Schäfer, M.: A geometric look at corner cutting. Computer Aided Geometric Design 14(5), 421–447 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Prusinkiewicz, P., Hammel, M.S.: Language-restricted iterated function systems, koch constructions and l-systems. In: New Directions for Fractal Modeling in Computer Graphics, ACM SIGGRAPH Course Notes. ACM Press, New York (1994)

    Google Scholar 

  16. Scealy, R.: V -variable fractals and interpolation. PhD thesis, Australian National University (2008)

    Google Scholar 

  17. Sokolov, D., Gentil, C.: Sufficient conditions for differentiability of local corner cutting curves. Research report, LE2I, Université de Bourgogne (2010)

    Google Scholar 

  18. Stam, J.: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In: Proceedings of SIGGRAPH, pp. 395–404 (1998)

    Google Scholar 

  19. Tosan, E., Bailly-Sallins, I., Gouaty, G., Stotz, I., Buser, P., Weinand, Y.: Une modélisation géométrique itérative basée sur les automates. In: GTMG 2006, Journées du Groupe de Travail en Modélisation Géométrique, Cachan, March 22-23, pp. 155–169 (2006)

    Google Scholar 

  20. Zair, C.E., Tosan, E.: Fractal modeling using free form techniques. Computer Graphics Forum 15(3), 269–278 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sokolov, D., Gentil, C., Bensoudane, H. (2012). Differential Behaviour of Iteratively Generated Curves. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27413-8_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27412-1

  • Online ISBN: 978-3-642-27413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics