Abstract
The aim of our work is to specify and develop a geometric modeler, based on the formalism of iterated function systems with the following objectives: access to a new universe of original, various, aesthetic shapes, modeling of conventional shapes (smooth surfaces, solids) and unconventional shapes (rough surfaces, porous solids) by defining and controlling the relief (surface state) and lacunarity (size and distribution of holes). In this context we intend to develop differential calculus tools for fractal curves and surfaces defined by IFS. Using local fractional derivatives, we show that, even if most fractal curves are nowhere differentiable, they admit a left and right half-tangents, what gives us an additional parameter to characterize shapes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barnsley, M.: Fractals everywhere. Academic Press Professional, Inc., San Diego (1988)
Bensoudane, H.: Étude différentielle des formes fractales. PhD thesis, Université de Bourgogne (2009)
Bensoudane, H., Gentil, C., Neveu, M.: Fractional half-tangent of a curve described by iterated function system. Journal Of Applied Functional Analysis 4(2), 311–326 (2009)
Boier-Martin, I., Zorin, D.: Differentiable parameterization of Catmull-Clark subdivision surfaces. In: SGP 2004: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 155–164. ACM, New York (2004)
De Boor, C.: Local corner cutting and the smoothness of the limiting curve. Computer Aided Geometric Design 7(5), 389–397 (1990)
Cochran, W.O., Lewis, R.R., Hart, J.C.: The normal of a fractal surface. The Visual Computer 17(4), 209–218 (2001)
Gentil, C.: Les fractales en synthèse d’image: le modèle IFS. PhD thesis, Université LYON 1 (1992)
Gregory, J.A., Qu, R.: Nonuniform corner cutting. Computer Aided Geometric Design 13(8), 763–772 (1996)
Hutchinson, J.: Fractals and self-similarity. Indiana University Journal of Mathematics 30(5), 713–747 (1981)
Khodakovsky, A., Schröder, P.: Fine level feature editing for subdivision surfaces. In: SMA 1999: Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications, pp. 203–211. ACM, New York (1999)
Kolwankar, K.M., Gangal, A.D.: Hölder exponents of irregular signals and local fractional derivatives. Pramana 48(1), 49–68 (1997)
Kolwankar, K.M., Gangal, A.D.: Local fractional derivatives and fractal functions of several variables. In: Proc. of Fractals in Engineering (1997)
Daniel Mauldin, R., Williams, S.C.: Hausdorff dimension in graph directed constructions. Transactions of the American Mathematical Society 309(2), 811–829 (1988)
Paluszny, M., Prautzsch, H., Schäfer, M.: A geometric look at corner cutting. Computer Aided Geometric Design 14(5), 421–447 (1997)
Prusinkiewicz, P., Hammel, M.S.: Language-restricted iterated function systems, koch constructions and l-systems. In: New Directions for Fractal Modeling in Computer Graphics, ACM SIGGRAPH Course Notes. ACM Press, New York (1994)
Scealy, R.: V -variable fractals and interpolation. PhD thesis, Australian National University (2008)
Sokolov, D., Gentil, C.: Sufficient conditions for differentiability of local corner cutting curves. Research report, LE2I, Université de Bourgogne (2010)
Stam, J.: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In: Proceedings of SIGGRAPH, pp. 395–404 (1998)
Tosan, E., Bailly-Sallins, I., Gouaty, G., Stotz, I., Buser, P., Weinand, Y.: Une modélisation géométrique itérative basée sur les automates. In: GTMG 2006, Journées du Groupe de Travail en Modélisation Géométrique, Cachan, March 22-23, pp. 155–169 (2006)
Zair, C.E., Tosan, E.: Fractal modeling using free form techniques. Computer Graphics Forum 15(3), 269–278 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sokolov, D., Gentil, C., Bensoudane, H. (2012). Differential Behaviour of Iteratively Generated Curves. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-27413-8_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27412-1
Online ISBN: 978-3-642-27413-8
eBook Packages: Computer ScienceComputer Science (R0)