Content Based Image Retrieval Using Bag-Of-Regions | SpringerLink
Skip to main content

Content Based Image Retrieval Using Bag-Of-Regions

  • Conference paper
Advances in Multimedia Modeling (MMM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7131))

Included in the following conference series:

Abstract

In this work we introduce the Bag-Of-Regions model, inspired from the Bag-Of-Visual-Words. Instead of clustering local image patches represented by SIFT or related descriptors, low level descriptors are extracted and clustered from image regions, as given by a segmentation algorithm. The Bag-Of-Region model allows to define visual dictionaries that capture extra information with respect to Bag-Of-Visual-Words. Combined description schemes and ad-hoc incremental clustering for visual dictionnaries are proposed. The results on public datasets are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In: SODA 2007, pp. 1027–1035 (2007)

    Google Scholar 

  2. Aslam, J.A., Montague, M.: Models for metasearch. In: ACM SIGIR (2001)

    Google Scholar 

  3. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. Computer Vision and Image Understanding 110, 346–359 (2008)

    Article  Google Scholar 

  4. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: An experimental comparison. Information Retrieval 11(2), 77–107 (2008)

    Article  Google Scholar 

  5. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D. A.: Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: CVPR 2004 (2004)

    Google Scholar 

  7. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. International Journal of Computer Vision 59, 167–181 (2004)

    Article  Google Scholar 

  8. Flickner, M., Sawhney, H., Niblack, W., et al.: Query by image and video content: the qbic system. IEEE Computer 28(9), 23–32 (1995)

    Article  Google Scholar 

  9. Fox, E.A., Shaw, J.A.: Combination of multiple searches. In: Third Text Retrieval Conference, TREC 1994 (1994)

    Google Scholar 

  10. Gokalp, D., Aksoy, S.: Scene classification using bag-of-regions representations. In: CVPR 2007, pp. 1–8 (2007)

    Google Scholar 

  11. Hofmann, T.: Learning the similarity of documents: an information-geometric approach to document retrieval and categorization. In: Advances in Neural Information Processing Systems (2000)

    Google Scholar 

  12. Ladicky, L., Russel, C., Kohliwu, P.: Associative hierarchical crfs for object class image segmentation. In: ICCV 2009 (2009)

    Google Scholar 

  13. Lee, J.H.: Analyses of multiple evidence combination. In: ACM SIGIR 1997 (1997)

    Google Scholar 

  14. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: Turbopixels: Fast superpixels using geometric flows. IEEE PAMI 31, 1–9 (2009)

    Article  Google Scholar 

  15. Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE PAMI 25, 1075–1088 (2003)

    Article  Google Scholar 

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2(60), 91–110 (2004)

    Article  Google Scholar 

  17. Lughofer, E.: Extensions of vector quantization for incremental clustering. Pattern Recognition 41, 995–1011 (2008)

    Article  MATH  Google Scholar 

  18. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE PAMI 27, 1615–1630 (2005)

    Article  Google Scholar 

  19. Nister, D., Stewenius, H.: Scalable recognition witha vocabulary tree. In: CVPR 2006 (2006)

    Google Scholar 

  20. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE PAMI 24, 971–987 (2002)

    Article  MATH  Google Scholar 

  21. Rahmani, R., Goldman, S.A., Zhang, H., Cholleti, S.R., Fritts, J.E.: Localized content based image retrieval. IEEE PAMI 30, 1902–1912 (2008)

    Article  Google Scholar 

  22. Ramanathan, V., Mishra, S.S., Mitra, P.: Quadtree decomposition based extended vector space model for image retrieval. In: IEEE WACV (2011)

    Google Scholar 

  23. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: ICCV 2003, vol. 2, pp. 1470–1477 (2003)

    Google Scholar 

  24. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE PAMI 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  25. Souvannavong, F., Merialdo, B., Huer, B.: Region-based video content indexing and retrieval. In: CBMI 2005 (2005)

    Google Scholar 

  26. Tighe, J., Lazebnik, S.: SuperParsing: Scalable Nonparametric Image Parsing with Superpixels. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 352–365. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Vieux, R., Benois-Pineau, J., Domenger, J.-P., Braquelaire, A.: Segmentation-based multi-class semantic object detection. Multimedia Tools and Applications, 1–22 (October 2010)

    Google Scholar 

  28. Yeh, T., Lee, J., Darrell, T.: Adaptive vocabulary forests br dynamic indexing and category learning. In: ICCV 2007, pp. 1–8 (October 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vieux, R., Benois-Pineau, J., Domenger, JP. (2012). Content Based Image Retrieval Using Bag-Of-Regions. In: Schoeffmann, K., Merialdo, B., Hauptmann, A.G., Ngo, CW., Andreopoulos, Y., Breiteneder, C. (eds) Advances in Multimedia Modeling. MMM 2012. Lecture Notes in Computer Science, vol 7131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27355-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27355-1_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27354-4

  • Online ISBN: 978-3-642-27355-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics