Abstract
Causal relationships among a set of observed variables are often modeled using directed acyclic graph (DAG) structures, and learning such structures from data is known as the causal discovery problem. We here consider the learning of linear non-Gaussian acyclic models [9] with hidden variables [5]. Estimation of such models is computationally challenging and hence only possible when the number of variables is small. We present an algorithm for obtaining partial but in the large sample limit correct information about pairwise total causal effects in such a model. In particular, we obtain consistent estimates of the total effects for all variable pairs for which there exist an unconfounded superset of observed variables. Simulations show that the estimated pairwise total effects are good approximations of the true total effects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bollen, K.A.: Structural Equations with Latent Variables. John Wiley & Sons, Chichester (1989)
Darmois, G.: Analyse générale des liaisons stochastiques. RIIS 21 (1953)
Eriksson, J., Koivunen, V.: Identifiability, Separability, and Uniqueness of Linear ICA Models. IEEE Signal Processing Letters 11(7) (2004)
Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B., Smola, A.J.: A Kernel Statistical Test of Independence. In: Adv. NIPS (2008)
Hoyer, P.O., Shimizu, S., Kerminen, A.J., Palviainen, M.: Estimation of causal effects using linear non-Gaussian models with hidden variables. IJAR 49 (2008)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley Interscience, Hoboken (2001)
Kawahara, Y., Bollen, K., Shimizu, S., Washio, T.: GroupLiNGAM: Linear non-Gaussian acyclic models for sets of variables. arXiv:1006.5041v1 (2010)
Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge (2000)
Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-gaussian acyclic model for causal discovery. JMLR 7 (2006)
Skitovitch, W.P.: On a property of the normal distribution. DAN SSSR 89 (1953)
Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search, 2nd edn. MIT Press, Cambridge (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Entner, D., Hoyer, P.O. (2011). Discovering Unconfounded Causal Relationships Using Linear Non-Gaussian Models. In: Onada, T., Bekki, D., McCready, E. (eds) New Frontiers in Artificial Intelligence. JSAI-isAI 2010. Lecture Notes in Computer Science(), vol 6797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25655-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-25655-4_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25654-7
Online ISBN: 978-3-642-25655-4
eBook Packages: Computer ScienceComputer Science (R0)