Discovering Unconfounded Causal Relationships Using Linear Non-Gaussian Models | SpringerLink
Skip to main content

Discovering Unconfounded Causal Relationships Using Linear Non-Gaussian Models

  • Conference paper
New Frontiers in Artificial Intelligence (JSAI-isAI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6797))

Included in the following conference series:

Abstract

Causal relationships among a set of observed variables are often modeled using directed acyclic graph (DAG) structures, and learning such structures from data is known as the causal discovery problem. We here consider the learning of linear non-Gaussian acyclic models [9] with hidden variables [5]. Estimation of such models is computationally challenging and hence only possible when the number of variables is small. We present an algorithm for obtaining partial but in the large sample limit correct information about pairwise total causal effects in such a model. In particular, we obtain consistent estimates of the total effects for all variable pairs for which there exist an unconfounded superset of observed variables. Simulations show that the estimated pairwise total effects are good approximations of the true total effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bollen, K.A.: Structural Equations with Latent Variables. John Wiley & Sons, Chichester (1989)

    Book  Google Scholar 

  2. Darmois, G.: Analyse générale des liaisons stochastiques. RIIS 21 (1953)

    Google Scholar 

  3. Eriksson, J., Koivunen, V.: Identifiability, Separability, and Uniqueness of Linear ICA Models. IEEE Signal Processing Letters 11(7) (2004)

    Google Scholar 

  4. Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B., Smola, A.J.: A Kernel Statistical Test of Independence. In: Adv. NIPS (2008)

    Google Scholar 

  5. Hoyer, P.O., Shimizu, S., Kerminen, A.J., Palviainen, M.: Estimation of causal effects using linear non-Gaussian models with hidden variables. IJAR 49 (2008)

    Google Scholar 

  6. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley Interscience, Hoboken (2001)

    Book  Google Scholar 

  7. Kawahara, Y., Bollen, K., Shimizu, S., Washio, T.: GroupLiNGAM: Linear non-Gaussian acyclic models for sets of variables. arXiv:1006.5041v1 (2010)

    Google Scholar 

  8. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-gaussian acyclic model for causal discovery. JMLR 7 (2006)

    Google Scholar 

  10. Skitovitch, W.P.: On a property of the normal distribution. DAN SSSR 89 (1953)

    Google Scholar 

  11. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search, 2nd edn. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Entner, D., Hoyer, P.O. (2011). Discovering Unconfounded Causal Relationships Using Linear Non-Gaussian Models. In: Onada, T., Bekki, D., McCready, E. (eds) New Frontiers in Artificial Intelligence. JSAI-isAI 2010. Lecture Notes in Computer Science(), vol 6797. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25655-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25655-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25654-7

  • Online ISBN: 978-3-642-25655-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics