On Constructing Families of Pairing-Friendly Elliptic Curves with Variable Discriminant | SpringerLink
Skip to main content

On Constructing Families of Pairing-Friendly Elliptic Curves with Variable Discriminant

  • Conference paper
Progress in Cryptology – INDOCRYPT 2011 (INDOCRYPT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7107))

Included in the following conference series:

Abstract

In [10] Freeman, Scott and Teske consider three types of families: complete, sparse and complete with variable discriminant. A general method for constructing complete families is due to Brezing and Weng. In this note we generalize this method to construct families of the latter two types. As an application, we find variable-discriminant families for a few embedding degrees, which improve the previous best ρ-values of families given in [10].

Research supported by the Polish Minister of Science as project O R00 0111 12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing Elliptic Curves with Prescribed Embedding Degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001); Full version: J. Cryptol. 17, 297–319 (2004)

    Chapter  Google Scholar 

  5. Bisson, G., Satoh, T.: More Discriminants with the Brezing-Weng Method. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 389–399. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des. Codes Cryptogr. 37, 133–141 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cocks, C., Pinch, R.G.E.: Identity-based cryptosystems based on the Weil pairing (2001) (unpublished manuscript)

    Google Scholar 

  8. Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2002)

    Google Scholar 

  9. Freeman, D.: Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 452–465. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptol. 23, 224–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Joux, A.: A one round protocol for tripartite DiffieHellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Galbraith, S., McKee, J., Valença, P.: Ordinary abelian varieties having small embedding degree. Finite Fields Appl. 13, 800–814 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng Pairing-Friendly Elliptic Curves Using Elements in the Cyclotomic Field. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curves traces for FR-reduction. IEICE Trans. Fundam. E84-A, 1234–1243 (2001)

    Google Scholar 

  15. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairings. In: 2000 Symposium on Cryptography and Information Security, SCIS 2000, Okinawa, Japan (2000)

    Google Scholar 

  16. Scott, M., Barreto, P.S.L.M.: Generating more MNT elliptic curves. Des. Codes Cryptogr. 38, 209–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Silverman, J.: The Arithmetic of Elliptic Curves. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dryło, R. (2011). On Constructing Families of Pairing-Friendly Elliptic Curves with Variable Discriminant. In: Bernstein, D.J., Chatterjee, S. (eds) Progress in Cryptology – INDOCRYPT 2011. INDOCRYPT 2011. Lecture Notes in Computer Science, vol 7107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25578-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25578-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25577-9

  • Online ISBN: 978-3-642-25578-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics