Abstract
In [10] Freeman, Scott and Teske consider three types of families: complete, sparse and complete with variable discriminant. A general method for constructing complete families is due to Brezing and Weng. In this note we generalize this method to construct families of the latter two types. As an application, we find variable-discriminant families for a few embedding degrees, which improve the previous best ρ-values of families given in [10].
Research supported by the Polish Minister of Science as project O R00 0111 12.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing Elliptic Curves with Prescribed Embedding Degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003)
Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)
Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001); Full version: J. Cryptol. 17, 297–319 (2004)
Bisson, G., Satoh, T.: More Discriminants with the Brezing-Weng Method. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 389–399. Springer, Heidelberg (2008)
Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des. Codes Cryptogr. 37, 133–141 (2005)
Cocks, C., Pinch, R.G.E.: Identity-based cryptosystems based on the Weil pairing (2001) (unpublished manuscript)
Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2002)
Freeman, D.: Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 452–465. Springer, Heidelberg (2006)
Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptol. 23, 224–280 (2010)
Joux, A.: A one round protocol for tripartite DiffieHellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000)
Galbraith, S., McKee, J., Valença, P.: Ordinary abelian varieties having small embedding degree. Finite Fields Appl. 13, 800–814 (2007)
Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng Pairing-Friendly Elliptic Curves Using Elements in the Cyclotomic Field. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg (2008)
Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curves traces for FR-reduction. IEICE Trans. Fundam. E84-A, 1234–1243 (2001)
Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairings. In: 2000 Symposium on Cryptography and Information Security, SCIS 2000, Okinawa, Japan (2000)
Scott, M., Barreto, P.S.L.M.: Generating more MNT elliptic curves. Des. Codes Cryptogr. 38, 209–217 (2006)
Silverman, J.: The Arithmetic of Elliptic Curves. Springer, Berlin (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dryło, R. (2011). On Constructing Families of Pairing-Friendly Elliptic Curves with Variable Discriminant. In: Bernstein, D.J., Chatterjee, S. (eds) Progress in Cryptology – INDOCRYPT 2011. INDOCRYPT 2011. Lecture Notes in Computer Science, vol 7107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25578-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-25578-6_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25577-9
Online ISBN: 978-3-642-25578-6
eBook Packages: Computer ScienceComputer Science (R0)