Publicly Verifiable Secret Sharing for Cloud-Based Key Management | SpringerLink
Skip to main content

Publicly Verifiable Secret Sharing for Cloud-Based Key Management

  • Conference paper
Progress in Cryptology – INDOCRYPT 2011 (INDOCRYPT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7107))

Included in the following conference series:

  • 1028 Accesses

Abstract

Running the key-management service of cryptographic systems in the cloud is an attractive cost saving proposition. Supporting key-recovery is an essential component of every key-management service. We observe that to verifiably support key-recovery in a public cloud, it is essential to use publicly verifiable secret-sharing (PVSS) schemes. In addition, a holistic approach to security must be taken by requiring that running the key-management service in the (untrusted) cloud does not violate the security of the cryptographic system at hand.

This paper takes such a holistic approach for the case of public-key encryption which is one of the most basic cryptographic tasks. The approach boils down to formalizing the security of public-key encryption in the presence of PVSS. We present such a formalization and observe that the PVSS scheme of Stadler [29] can be shown to satisfy our definition, albeit in the Random Oracle Model.

We construct a new scheme based on pairings which is much more efficient than Stadler’s scheme. Our scheme is noninteractive and can support any monotone access structure. In addition, it is proven secure in the standard model under the Bilinear Diffie-Hellman (BDH) assumption. Interestingly, our PVSS scheme is actually the first non-interactive scheme proven secure in the standard model; all previous non-interactive PVSS schemes assume the existence of a Random Oracle. Our scheme is simple and efficient; an implementation of our scheme demonstrates that our scheme compares well with the current fastest known PVSS schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aranha, D.F., López, J., Hankerson, D.: High-Speed Parallel Software Implementation of the η T Pairing. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 89–105. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel Institute of Technology, Technion, Haifa, Israel (June 1996)

    Google Scholar 

  3. Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: ACM Conference on Computer and Communications Security, pp. 78–91 (1997)

    Google Scholar 

  4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)

    Google Scholar 

  5. Blakley Jr., G.R.: Safeguarding cryptographic keys. In: AFIPS 1979, National Computer Conference, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  6. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003); Ealier version in [7]

    Google Scholar 

  9. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults (extended abstract). In: 26th Annual Symposium on Foundations of Computer Science (FOCS), pp. 383–395. IEEE (1985)

    Google Scholar 

  10. Creeger, M.: Cloud computing: An overview. Queue 7, 2:3–2:4 (2009)

    Google Scholar 

  11. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: 28th Annual Symposium on Foundations of Computer Science (FOCS), pp. 427–437. IEEE (1987)

    Google Scholar 

  12. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  13. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM Conference on Computer and Communications Security, pp. 89–98. ACM (2006)

    Google Scholar 

  15. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptology 17(4), 263–276 (2004); Earlier version in [15]

    Article  MathSciNet  MATH  Google Scholar 

  17. Klien, M.: Six Benefits of Cloud Computing (2010), http://resource.onlinetech.com/the-six-benefits-of-cloud-computing/

  18. Martin, L.: Federated Key Management for Secure Cloud Computing. Presentation by Voltage Security, Inc. (May 2010), http://storageconference.org/2010/Presentations/KMS/17.Martin.pdf

  19. Micali, S.: Fair Public-Key Cryptosystems. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 113–138. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  20. Micali, S., Shamir, A.: Partial key-escrow (1996) (manuscript)

    Google Scholar 

  21. Escrowed encryption standard (EES). FIPS PUB 185, National Institute of Standards and Technology (February 1994)

    Google Scholar 

  22. National Institute of Standards and Technology. NIST Special Publication 800-57: Recommendation for Key Management — Part 1: General (revised) (2007)

    Google Scholar 

  23. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  24. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Schoenmakers, B.: A Simple Publicly Verifiable Secret Sharing Scheme and Its Application to Electronic Voting. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 148–164. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  26. Scott, M.: MIRACL—A Multiprecision Integer and Rational Arithmetic C/C++ Library. Shamus Software Ltd, Dublin, Ireland (2010), http://www.shamus.ie/

  27. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shoup, V.: Encryption algorithms—part 2: Asymmetric ciphers. Final Committee Draft 18033-2, ISO/IEC (December 2004), http://www.shoup.net/iso/std6.pdf

  29. Stadler, M.: Publicly Verifiable Secret Sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

D’Souza, R., Jao, D., Mironov, I., Pandey, O. (2011). Publicly Verifiable Secret Sharing for Cloud-Based Key Management. In: Bernstein, D.J., Chatterjee, S. (eds) Progress in Cryptology – INDOCRYPT 2011. INDOCRYPT 2011. Lecture Notes in Computer Science, vol 7107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25578-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25578-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25577-9

  • Online ISBN: 978-3-642-25578-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics