Processing and Classification of Multichannel Remote Sensing Data | SpringerLink
Skip to main content

Processing and Classification of Multichannel Remote Sensing Data

  • Conference paper
Advances in Soft Computing (MICAI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7095))

Included in the following conference series:

  • 928 Accesses

Abstract

Several main practical tasks, important for effective pre-processing of multichannel remote sensing (RS) images, are considered in order to reliably retrieve useful information from them and to provide availability of data to potential users. First, possible strategies of data processing are discussed. It is shown that one problem is to use more adequate models to describe the noise present in real images. Another problem is automation of all or, at least, several stages of data processing, like determination of noise type and its statistical characteristics, noise filtering and image compression before applying classification at the final stage. Second, some approaches that are effective and are able to perform well enough within automatic or semi-automatic frameworks for multichannel images are described and analyzed. The applicability of the proposed methods is demonstrated for particular examples of real RS data classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aiazzi, B., Baronti, S., Lastri, C., Santurri, L., Alparone, L.: Low complexity lossless/near-lossless compression of hyperspectral imagery through classified linear spectral prediction. In: Proceedings of IGARSS, p. 4 (2005)

    Google Scholar 

  2. Christophe, E.: Hyperspectral Data Compression Tradeoff. In: Prasad, S., et al. (eds.) Optical Remote Sensing. Advances in Signal Processing and Exploitation Techniques Series: Augmented Vision and Reality, vol. 3, pp. 9–30. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Chang, C.-I. (ed.): Hyperspectral Data Exploitation: Theory and Applications. Wiley-Interscience (2007)

    Google Scholar 

  4. Kulemin, G.P., Zelensky, A.A., Astola, J.T., Lukin, V.V., Egiazarian, K.O., Kurekin, A.A., Ponomarenko, N.N., Abramov, S.K., Tsymbal, O.V., Goroshko, Y.A., Tarnavsky, Y.V.: Methods and Algorithms for Pre-processing and Classification of Multichannel Radar Remote Sensing Images, TTY Monistamo, Tampere, Finland. TICSP Series, vol. 28, p. 116 (2004)

    Google Scholar 

  5. Lukin, V.V., Abramov, S.K., Ponomarenko, N.N., Uss, M.L., Zriakhov, M., Vozel, B., Chehdi, K., Astola, J.T.: Methods and automatic procedures for processing images based on blind evaluation of noise type and characteristics. SPIE Journal of Applied Remote Sensing 5, 53502 (2011)

    Article  Google Scholar 

  6. Mielikäinen, J.: Lossless compression of hyperspectral images using lookup tables. IEEE Signal Processing Letters 13, 157–160 (2006)

    Article  Google Scholar 

  7. Lukin, V., Ponomarenko, N., Kurekin, A., Lever, K., Pogrebnyak, O., Fernandez, L.P.S.: Approaches to Classification of Multichannel Images. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 794–803. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. García-Vílchez, F., Muñoz-Marí, J., Zortea, M., Blanes, I., González-Ruiz, V., Camps-Valls, G., Plaza, A., Serra-Sagristà, J.: On the Impact of Lossy Compression on Hyperspectral Image Classification and Unmixing. IEEE Geoscience and Remote Sensing Letters 8(2), 253–257 (2011)

    Article  Google Scholar 

  9. Fevralev, D.V., Lukin, V.V., Ponomarenko, N.N., Vozel, B., Chehdi, K., Kurekin, A., Shark, L.: Classification of filtered multichannel images. In: Bruzzone, L. (ed.) Proc. of SPIE, Image and Signal Processing for Remote Sensing XVI, vol. 7830, p. 78300M (2010)

    Google Scholar 

  10. Ponomarenko, N., Lukin, V., Zriakhov, M., Kaarna, A., Astola, J.: An automatic approach to lossy compression of AVIRIS images. In: Proceedings of IGARSS, Spain, pp. 472–475 (2007)

    Google Scholar 

  11. Ponomarenko, N., Lukin, V., Zriakhov, M., Kaarna, A., Astola, J.: Automatic approaches to on-board/on-land lossy compression of AVIRIS images. In: Proceedings of IGARSS, Boston, USA, p. 4 (2008)

    Google Scholar 

  12. Ponomarenko, N., Zriakhov, M., Lukin, V., Kaarna, A.: Improved Grouping and Noise Cancellation for Automatic Lossy Compression of AVIRIS Images. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part II. LNCS, vol. 6475, pp. 261–271. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Ponomarenko, N., Lukin, V., Zriakhov, M., Egiazarian, K., Astola, J.: Estimation of accesible quality in noisy image compression. In: Proceedings of EUSIPCO, Florence, Italy, p. 4 (2006)

    Google Scholar 

  14. Foi, A.: Pointwise Shape-Adaptive DCT Image Filtering and Signal-Dependent Noise Estimation, Thesis for the degree of Doctor of Technology, Tampere University of Technology, Tampere, Finland (2007), http://dspace.cc.tut.fi/dpub/handle/123456789/115

  15. Sendur, L., Selesnick, I.W.: Bivariate shrinkage functions for wavelet based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing 50(11), 2744–2756 (2002)

    Article  Google Scholar 

  16. Oktem, R., Egiazarian, K., Lukin, V.V., Ponomarenko, N.N., Tsymbal, O.V.: Locally adaptive DCT filtering for signal-dependent noise removal. EURASIP Journal on Advances in Signal Processing 2007, 10 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lukin, V.V., Oktem, R., Ponomarenko, N., Egiazarian, K.: Image filtering based on discrete cosine transform. Telecommunications and Radio Engineering 66(18), 1685–1701 (2007)

    Article  Google Scholar 

  18. Ponomarenko, N., Lukin, V., Egiazarian, K., Astola, J.: DCT Based High Quality Image Compression. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 1177–1185. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Ponomarenko, N.N., Lukin, V.V., Egiazarian, K., Astola, J.: ADCTC: a new high quality DCT based coder for lossy image compression. In: CD ROM Proceedings of LNLA, p. 6 (2008)

    Google Scholar 

  20. Al-Chaykh, O.K., Mersereau, R.M.: Lossy compression of noisy images. IEEE Transactions on Image Processing 7(12), 1641–1652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lukin, V., Ponomarenko, N., Zriakhov, M., Zelensky, A., Egiazarian, K., Astola, J.: Quasi-optimal compression of noisy optical and radar images. In: Proceedings of SPIE Conf. Image and Signal Processing for Remote Sensing XII, Sweden, vol. 6365 (2006)

    Google Scholar 

  22. Ponomarenko, N., Krivenko, S., Lukin, V., Egiazarian, K.: Lossy Compression of Noisy Images Based on Visual Quality: A Comprehensive Study. EURASIP Journal on Advances in Signal Processing, 13 (2010)

    Google Scholar 

  23. Christophe, E., Leger, D., Mailhes, C.: Quality criteria benchmark for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing 43(9), 2103–2114 (2005)

    Article  Google Scholar 

  24. Bose, N.K., Liang, P.: Neural network fundamentals with graphs, algorithms and applications. McGraw-Hill (1996)

    Google Scholar 

  25. Schölkopf, B., Burges, J.C., Smola, A.J.: Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  26. Ponomarenko, N.N., Lukin, V.V., Zelensky, A.A., Koivisto, P.T., Egiazarian, K.O.: 3D DCT Based Filtering of Color and Multichannel Images. Telecommunications and Radio Engineering 67, 1369–1392 (2008)

    Article  Google Scholar 

  27. Barducci, A., Guzzi, D., Marcoinni, P., Pippi, I.: CHRIS-Proba performance evaluation: signal-to-noise ratio, instrument efficiency and data quality from acquisitions over San Rossore (Italy) test site. In: Proceedings of the 3rd ESA CHRIS/Proba Workshop, Italy, p. 11 (2005)

    Google Scholar 

  28. Uss, M., Vozel, B., Lukin, V., Chehdi, K.: Local Signal-Dependent Noise Variance Estimation from Hyperspectral Textural Images. IEEE Journal of Selected Topics in Signal Processing 5(2) (in print, 2011)

    Google Scholar 

  29. Lukin, V., Krivenko, S., Zriakhov, M., Ponomarenko, N., Abramov, S., Kaarna, A., Egiazarian, K.: Lossy compression of images corrupted by mixed Poisson and additive noise. In: Proceedings of LNLA, Helsinki, pp. 33–40 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lukin, V., Ponomarenko, N., Kurekin, A., Pogrebnyak, O. (2011). Processing and Classification of Multichannel Remote Sensing Data. In: Batyrshin, I., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2011. Lecture Notes in Computer Science(), vol 7095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25330-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25330-0_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25329-4

  • Online ISBN: 978-3-642-25330-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics